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Abstract-This paper presents an investigation of two odor 
coding mechanisms in Freeman's KIII nenrodynamics 
model. Motivated by experimental evidence that 
supports the existence of a neural code based on 
synchronous oscillations, we propose an analogy between 
synchronization in neural populations and phase locking 
in KIl l  channels. The information carried by the phase is 
compared against the conventional amplitude code in 
terms of pattern-recovery capabilities. First, the scalar 
invariance of the KIll with respect to phase information 
is established. Symmetries and redundancies in the 
associative memory matrices are then exploited to 
perform an exhaustive evaluation of patterns on an 8- 
channel model. Simulation results show that phase 
information outperforms amplitude information in the 
recovery of odor patterns from incomplete or corrupted 
sensory stimulus. 

1. INTRODUCTION 
Neural coding schemes' based on firing synchrony are the 

inost compelling hypothesis for a temporal code spatially 
distributed across large neural populations. These types of 
codes have been found experimentally in different 
neocortical areas [I], and play an important role in the 
integration of visual information [2] and the codification of 
odors [3,4]. The objective of this paper is to ascertain 
whether this coding mechanism can be exploited in the KIII 
model, of Freeman et al. [5,6], arguably the most complete 
neurodynamics model of the olfactory system. 

The long term goal of this work is to develop biologically- 
plausible computational models to process data from 
chemical sensor arrays, commonly referred to as the 
electronic nose. An e-nose consists of (1) an array of 
chemical sensors with broad and overlapping selectivities and 
(2) a pattern recognition engine capable of associating sensor 
patterns with the corresponding odor labels 171. Biologically- 
inspired approaches have been the focus of attention in recent 
years [8] as an alternative to the statistical pattern recognition 
procedures commonly employed in electronic-nose data 
processing [9]. 

Along these lines, our experience with the KIII model 
[ 10,l I ]  shows that the information provided by the amplitude 
of the channels tends to degrade when the input patterns have 
a significant level of overlap, as is oftentimes the case in 
electronic nose data due to the cross-selectivity of the 
chemical sensors. This raises the question whether additional 

robust information can be extracted from the output of the 
model. In particular, we have observed that the KIII has a 
tendency to display similar phases in channels that encode for 
the same odor. This observation, along with experimental 
evidence for a neural code based on coherent oscillations in 
neural populations, motivates the study presented in this 
paper. 

11. TEMPORAL CODING AND COHERENT OSCILLATIONS 

Work by Adrian [12,13] more than 75 years ago showed 
that the firing rate of stretch receptor neurons is related to the 
force being applied to the muscles. This seminal contribution 
led to the widespread belief that firing rate was the code used 
by neural systems to transmit information. As a 
consequence, early neural network models interpreted the 
output of artificial neurons as an abstraction of the neural 
firing rate in their biological counterparts. In recent years, 
this view has been challenged with ample experimental 
evidence showing the need to take into consideration the 
temporal dimension in neural information processing. 

Undisputable evidence for a temporal code is best 
illustrated by the work of Thorpe et al. [14,15], who have 
shown that humans and monkeys are able to respond to a 
visual categorization problem in a very short period of time. 
In their experiments, an image is briefly flashed and the 
subject has to decide if it belongs to a target category or not. 
Considering (i) the pathway of the visual signal as it 
propagates through the brain, (ii) the minimum time required 
for a neuron to generate an action potential and (iii) the 
response time of the subjects in these experiments, it is 
possible to determine that there is time for only one spike to 
he generated at every relay station in the visual pathway. This 
result clashes with a frequency-rate coding hypothesis, and 
clearly points to the existence of a temporal dimension. 

A number of possible temporal coding mechanisms have 
been proposed, including inter-spike interval codes, time of 
arrival (latency) codes and synchrony codes 1161. Among 
these, the synchronous oscillation of ensembles presents the 
most empirical evidence. Synchronization has been proposed 
as a potential mechanism to correlate information from 
different senses or different parts of the brain [I]. I t  has also 
been found to play a role in visual feature integration [2]. Of 
particular interest to our work, Lauren1 et al. [3,4] have found 
that synchronous oscillations of neuron populations in insects 
is used as an odor encoding mechanism. Their work has 
shown that different odors evoke coherent oscillations in 
different but usually overlapping ensembles of neurons in the 
olfactory system. 
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111. THE U11 MODEL 
The KIII is a neurodynamics model of the olfactory system 

developed by Freeman and colleagues [5,6] over the last 30 
years. The output of the model reproduces 
electroencephalographic (EEG) recordings in the olfactory 
system by modeling the oscillatory behavior of neuron 
populations. The topology of the KIII, shown in Fig. 1, is 
based on the physiological structure of the mammalian 
olfactory system. Each node in the KIII represents a 
population of neurons, modeled by a second order 
differential equation, and each edge models the interaction 
between two populations. The strength of this interaction is 
controlled by a weight, which is positive when the 
connection is excitatory and negative if the connection is 
inhibitory. 

Odor stimuli are presented to the system as patterns, 
generally binary, through an input layer of receptors. Each 
receptor is connected to a periglomerular cell and a set of two 
mitral and two glomerular ensembles, forming a channel. 
Each of these channels can then he associated with one bit of 
the binary input stimulus and the corresponding output 
pattem. The KIII is able to store previously seen pattems by 
means of Hebbian lateral connections at the MI mitral layer. 
This allows the model to work as an associative memory for 
recovering incomplete or corrupted stimuli. 

In the absence of an external stimulus, the MI1 channels 
follow an aperiodic oscillatory behavior known as a basal 
state. When an input is presented, the system moves into a 
global attractor in state space, which can also be observed as 
pseudo-periodic oscillations in the output channels. The 
amplitude of the oscillations at each channel depends on the 
activation level of its receptor input, but is also influenced by 
other receptors as a result of the Hebhian lateral connections. 
The output pattem of the KIII is commonly assumed to be 
encoded in the amplitude or RMS of the oscillations of each 
channel [17], which does not exploit the temporal dimension 
of the KIII dynamics. Considering that the KIII is a model of 
neuron populations, it is appealing to consider the phase of 
the oscillations across channels as an analogous of the 
coherent oscillation coding scheme in biological neural 
systems. Hence, the goal of this paper is to investigate 
whether this phase information can in fact be used as a 
coding mechanism and, if so, compare its pattern-recovery 
performance against the conventional amplitude code. 

A .  Phase coding in the KIII model 
In order to efficiently capture phase information, we 

consider the state-space trajectory of pairs of U11 channels 
(GI populations) as a two-dimensional distribution. As 
shown in Fig. 2, differences in phase can be related to the 
correlation coefficient of the 2D distribution. Two ideal 
sinusoidal waveforms with the same phase will lead to a 
correlation coefficient of 1 (Fig. 2(a)), whereas a 180" phase 
difference result in a correlation coefficient of -1. 
Intermediate phase differences result in correlation 
coefficients between those two extremes [-1, I]. 
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Fig. 1. Structure afthe KIII model (from [ 5 ] )  

The trajectories in Fig. 2 were obtained by training a 32- 
channel KIII on two binary patterns, and presenting a 
distorted version of the first pattern at the inputs. It can be 
seen that the shape and orientation of the attractors can be 
associated to different types of errors in the input stimulus. It 
is also important to note that the correlation coefficient not 
only captures information ahout the orientation of the 
principal eigenvector but also about the area enclosed by the 
trajectory (i.e. the shape of the attractor.) 
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Fig. 2 .  Extracting phase information from the Klll 



(-: Overlap 

1 1 1 1  Pattern A 

1 1 1 1  Pattern B 

Fig. 3. Ovcrlap bcW& input patterns for a 16-channel KIll (a). Simulating 
an incomplete (b) and a corrupted (c) input pattcm. 

(b) 

The KIII model with matrix formulation described in [6] 
was employed in this work. The model was implemented in 
MATLAB using fourth-order Runge-Kutta ODE integration 
with a time step of 1 .O ms. Initial conditions for all variables 
and their derivatives were set lo zero. KIII parameter settings 
were borrowed from [ 181. 

I 0 1 1 Stn"us 

IV. SCALING INVARIANCE 

(c) 1 1 1 1  1 

Invariance of the KlIl model with respect to the number of 
channels has been empirically established by Yao and 
Freeman [ 5 ]  in terms'of the amplitude and general shape of 
the oscillations observed at each channel. To determine if 
these results can be generalized to phase information, we 
present a thorough study on three KIII models with 16, 32 
and 64 channels. The study simulates a two-odor 
classification problem with varying levels of complexity in 
terms of ( I )  the degree of overlap between the two stored 
patterns and ( 2 )  the number of missing or corrupted channels 
that are presented at the input. 

Fig. 3 illustrates the two input patterns for the 16-channel 
case. Each pattern consists of four active channels, 
represented by a 1, and 12 inactive channels, represented by a 
blank bit. Due to the symmetry of the problem, in what 
follows the KIlI model is always excited with a stimulus 
from Pattem A. To incorporate different degrees of overlap, 
three patterns sets are considered having 0, 1 and 2 hits of 
overlap. Each one of these three sets leads to a unique 
Hebbian associative matrix and, therefore, a separate KIII 
model. Fig. 3(a) illustrates the situation where the patterns 
have an overlap of 2 bits. To simulate incomplete patterns 
(e.g. caused by sensor degradation), 0, 1 or 2 of the active 
bits in the stimulus may be set to zero. Fig. 3(b) illustrates 
the case where the stimulus for pattern A is incomplete by 
one bit. Finally, to simulate corrupted patterns (e.g. to due to 
background odors), 0, I and 2 bits not belonging to either 
pattern may be set to one. Fig. 3(c) shows a stimulus for 
Pattern A with one corrupted bit. All these different 
combinations lead to 3.3.3=27 possible scenarios for a 16- 
channel KIII model. Data for the 32- and 64-channel models 
is obtained by scaling the stored patterns and input stimuli by 
a factor of 2 and 4, respectively. 
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Fig. 4. Scatter plot afamplihlde vs. phase codes far different input- 
stimulus~desired-response eases 

Simulation results are presented in Fig. 4 in the form of bi- 
variate scatter plots. Each point in the scatter plots represents 
the output of one KIII channel for one stimulus. The abscissa 
axis is the RMS aniplitude of the channel, whereas the 
ordinate axis is the phase relative to channel 0, which is 
consistently activated and used as a reference. In this work 
the GI  signals are not band-pass filtered in the gamma band 
(20-80 Hz) as suggested in [19]. Comparable results, 
however, were obtained on the gamma-band filtered signals. 
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Fig. 5 .  Univariatc density functions for thc amplirudc and phasc codcs 

Four different cases of input-stimulus3desired-response 
are considered in the study, which correspond to two correct 
and two erroneous input stimuli: . 1 3  I (no error): stimulus in a channel that encodes for 

0 3 0  (no error): no stimulus in a channel that does not 

1 0 3 1  (incomplete pattem): missing stimulus in channel 

= 1 3 0  (corrupted pattem): noisy stimulus in a channel that 

The results in Fig. 4 show that, although a higher number 
of channels yields a more detailed structure of the 
amplitudeiphase clusters, these scatter plots have a similar 
structure regardless of the number of channels. This result 
leads to the conclusion that the KIII model is not only scale 
invariant with respect to amplitudes, a result previously 
established by Yao and Freeman [ 5 ] ,  but also with respect to 
phase information. 

pattem A 

encode for pattem A 

that encodes for pattem A 

does not encode for pattem A 

A.  Pattern recovery: preliminay results 
An important conclusion can also be extracted from these 

scatter plots. Fig. 5 shows the univariate distribution of the 
amplitude and phase codes in the 64-channel model for the 
each of the four input-stimulus3desired-response cases. A 
Gaussian distribution has been assumed for visualization 
purposes. It can be observed that the amplitude code is able 
to recover either incomplete or corrupted bits, but not both, 
since the 0 3 1  and 1 3 0  densities lie on opposite sides of 
their desired response. This result indicates that the amplitude 
of a particular channel tends to be driven primarily by the 
input stimulus rather than by the lateral connections in the 
Hebbian matrix. In the case of a phase code, a simple 
threshold can he obtained to correct the majority of the 
incomplete or corrupted bits, indicating a higher sensitivity to 
lateral connections. Pattem recovery is, therefore, more 
reliable using phase information. This key result is further 
explored in the next section. 

~ 

344 

0 1 2 2 

Fig. 6.  Rcduction of a 4-channel model to I 1  non-isomorphic graphs. The 
index abovc each graph denotes the number ofaclivc Hebbian connections. 

V. SYMMETRY OF THE ASSOCIATIVE MEMORY MATRIX 

Once the scale invariance of the KlIl model with respect to 
phase information has been validated, the study can now be 
focused on a lower dimensional model where an exhaustive 
evaluation of every possible combination of input stimulus 
and pattem sets is computationally feasible. Although 2- and 
4-channel models could he used to this effect, the results in 
Fig. 4 show that more channels lead to higher resolution. For 
this reason, an &channel model is chosen for the final study. 

In order to avoid exploring redundant combinations, the 
symmetries in the KlIl associative-memory matrix will he 
exploited. Following [ 5 ] ,  the mitral-mitral lateral 
connections can be computed as: 
w.1 = Crb, pr) (1) 

vi 

where pi is the correct input pattem for the i-th odor class, 
andf(9 is a threshold function so that the elements in W,, are 
binary, either HIGH or LOW (diagonal elements in the 
matrix are set to zero.) Thus, a HIGH element in the Hebbian 
matrix represents two KlIl channels that are simultaneously 
active for at least one odor pattern. Since different pattem 
sets can lead to the same Hebbian matrix, an exhaustive 
evaluation of every possible pattern set can he reduced to the 
study of all possible matrix configurations. 

A representation of the Hehhian matrix as an undirected 
graph will he used to illustrate the existing symmetries. For 
simplicity, assume a 4-channel model with only one 
connection between channels. Since the channels are 
symmetric, the behavior of the system will be the same 
regardless of where this connection is located. Generalizing 
this idea, graphs with the same number of connections and 
the same topology (i.e. isomorphic graphs) have to he 
considered just once. As a result, a 4-channel model with Z6 
= 64 possible configurations is reduced to the 11 non- 
isomorphic graphs in Fig. 6. Similarly, a 8-channel model 
can he reduced from 228 = 2,7.108 to 1,192 cases, for a 
significant savings in CPU time. 

VI. PATTERN RECOVERY: FINAL RESULTS 

The final comparison of the two coding schemes will be 
performed on an 8-channel KIII model, for a total of 1,192 



non-isomorphic cases. As opposed to the preliminary study 
in section IVA, where performance was studied as a function 
of degrees of overlap in the pattern set and distortions in the 
input stimulus, the pattern recovery capabilities in this final 
study can only he evaluated in terms of the properties of each 
graph since the relationship between pattern sets and graphs 
is many-to-one. Two observations will greatly simplify this 
analysis. First, any two neighboring nodes (those that are 
connected directly by an edge) represent channels that are 
simultaneously active for at least one stored pattern. 
Conversely, any two nodes that are more than one edge away 
represent channels where two or more patterns overlap. 
Therefore, it is possible to analyze the across-fiber pattern- 
recovery performance of the phase and amplitude codes by 
comparing the activation between nodes connected by a 
single edge (which represents a true pattern) against the 
activation between nodes connected by a .  multi-edge path 
(which represents an undesirable overlap). 

This idea is illustrated in Fig. 7(a). For a given graph, a 
single input stimulus is applied to the channel with the 
highest number of lateral connections (do in the figure), and 
the activity on the remaining channels is analyzed. Nodes 
within one edge from do (denoted by d l )  are part of a 
pattern. Nodes two edges away (denoted by d2) are the 
effect of an overlap between two or more patterns. The 
remaining nodes (d3 through dm) can he neglected since they 
involve higher-order overlaps between patterns. Fig. 7(b) 
illustrates the situation where the response of dO and d l  
nodes .is 'linearly separable from the rest, indicating that a 
simple ;threshold function could he used to recover an 
incomplete pattern from an input stimulus having a single 
active channel. Fig. 7(c) illustrates the opposite situation, 
where the response of dO and d l  nodes is not linearly 
separable from the rest and, as a result, the incomplete pattern 
cannot be recovered. 
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Fig. 7. (a) Partcm and overlap bits for a given Hehhian graph. (b, c) Pattern 
recovery as a linear separability problem 
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Fig. 8. Ovcrall performance of the phase and amplitude codes as a function 
of patrem overlap 

The procedure outlined in Fig. 7 is repeated individually 
for each of the 1,192 non-isomorphic cases in the 8-channel 
KlII in order to measure the pattern recovery capabilities of 
the amplitude and phase codes. The results are presented in 
Fig. 8 as a function of the number of d, connections in each 
graph, which can he related to the overlap (e.g. the 
complexity) of the corresponding pattern sets. Each point in 
the plot represents the percentage of graphs where the linear 
separability in Fig. 7 0 )  is achieved, relative to the total 
number of graphs. This result shows that the performance of 
the amplitude code decreases dramatically as the degree of 
overlap increases, whereas the phase code degrades in a more 
graceful manner and always provides higher classification 
rates. Along with the preliminary data presented in Fig. 5, 
this result clearly demonstrates the remarkable superiority of 
the phase code over the amplitude code. 

VII. CONCLUSIONS 
This article has proposed an analogy between coherent 

oscillations in neural populations and phase locking in the 
KIII model. We have shown that phase information between 
two channels can he efficiently captured by treating the state- 
space trajectory as a two-dimensional distribution and 
computing its correlation coefficient. Scale invariance of the 
KIII with respect to this phase information has been 
empirically validated on three models with 16, 32 and 64 
channels. 

An exhaustive comparison of the pattem recovery 
capabilities of the proposed phase coding and the 
conventional amplitude coding has been presented on an 8- 
channel model. In order to avoid the combinatorial 
explosion, redundant pattern and stimulus combinations have 
been eliminated by means of graph isomorphism. 
Experimental results show that information embedded in the 
phase of the KlII channels clearly outperforms the amplitude 
code. 

The present study has focused on binary stimuli, but the 
KIII has also been shown [I91 to work efficiently with 
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continuous inputs. Thus, a natural extension of the work 
presented in this article is to consider continuous amplitude 
and phase representations. Additional information other than 
correlation coefficients (which relate to phase for sinusoidal 
waveforms) could also be extracted from the KIII dynamic 
attractors in two- or higher-dimensional state spaces. These 
areas constitute promising directions for future work. 
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