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Abstract.  The transient response of metal-oxide sensors exposed to mild odours can be 
oftentimes highly correlated with the behaviour of the array during the preceding wash and 
reference cycles.  Since wash/reference gases are virtually constant overtime, variations in 
their transient response can be used to estimate the amount of sensor drift present in each 
experiment.  We perform canonical correlation analysis and partial least squares to find a 
subset of “latent variables” that summarize the linear dependencies between odour and 
wash/reference responses.  Ordinary least squares regression is then used to subtract these 
“latent variables” from the odour response.  Experimental results on an odour database of four 
cooking spices, collected on a 10-sensor array over a period of three months, show significant 
improvements in predictive accuracy. 

 
 
1.  Introduction 
 
Besides selectivity and sensitivity constraints, sensor drift constitutes the main limitation of current 
gas sensor array instruments [1].  In order to improve baseline stability, it is customary to expose 
the sensor array to a sequence of wash and reference gases prior to sampling a target odour.  Since 
wash/reference (W/R) gases can be assumed to remain stable over time, variations in sensor 
response during these stages may be utilized, at no extra cost, as measures of the drift associated 
with each experiment and, therefore, compensated for in software.  

The instrument employed in this study is an array of ten commercial metal-oxide sensors.  
During operation, the array is initially washed for ten seconds with room air bubbled through a 
two-per-cent n-butanol dilution in order to flush residues from previous odour samples.  This wash 
stage is followed by a three-minute reference stage with charcoal-filtered air, which provides a 
baseline for the subsequent ninety-second odour stage, in which the array is finally exposed to the 
target odour. Figure 1 illustrates a typical sensor transient response obtained with this procedure.  

To preserve information from the sensor dynamics, we apply the windowed time slicing 
(WTS) technique [2, 3] to compress each exponential-shaped transient down to four weighted 
integrals, as shown in the lower portion of Figure 1.  With ten sensors, this compression technique 
yields 40-dimensional feature vectors xW, xR and y for the wash, reference and odour transients, 
respectively.  xW and xR are subsequently combined to form a regression vector x with 80 
dimensions. 
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Figure 1.  Extraction of window-time-slicing features from the wash, reference and odour stages 

 
 
2.  Drift reduction approach 
 
Whereas variance in the W/R vector x is primarily due to drift, variance in y is a result of the 
combined effect of drift and the odour-specific interaction with the sensing material.  Therefore, 
we seek to remove variance in y that can be explained by (correlated with) x while preserving 
odour-related variance.  We propose a drift reduction algorithm that consists of three steps: 

1. Find linear projections Axx =~  and Byy =~ that are maximally correlated: 

{ } ( )[ ]ByAxBA ,maxarg, ρ=      (1) 
Vectors x~  and y~  are low-dimensional projections that summarize the linear dependencies 
between x and y. 

2. Find a regression model yWy OLSpred
~=  using Ordinary Least Squares (OLS):   

2~minarg yWyWOLS −=      (2) 

The OLS prediction vector predy  contains the variance in the odour vector y that can be 

explained by y~  and, indirectly, by the W/R vector x. 
3.  Deflate y and use the residual z as a drift-reduced odour vector for classification purposes: 

ByWyyyz OLSpred −=−=     (3) 

To find the projection matrices A and B for the first step of the algorithm we employ 
Canonical Correlation Analysis (CCA) and Partial Least Squares (PLS.)  CCA is a multivariate 
statistical technique closely related to Principal Components Analysis (PCA.)  Whereas PCA finds 
the directions of maximum variance of each separate x- or y-space, CCA identifies directions 
where x and y co-vary.  It can be shown [4] that the columns of the projection matrices A and B are 
the eigenvectors of: 



Proceedings of the 7th International Symp. On Olfaction and Electronic Nose, Brighton, UK, July 20-24, 2000 

 3

( )
( ) 0

0
11

11

=−∑∑∑∑

=−∑∑∑∑
−−

−−

b,

aI

xyxxyxyy

yxyyxyxx
    (4) 

where { xx∑ , yy∑ } are the “within-space” covariance matrices and { yx∑ , yx∑ } are the “between-

space” covariance matrices.  The first pair of “latent variables” (canonical variates) xax 11
~ =  and 

yby 11
~ = corresponds to the eigenvectors a1 and b1 associated with the largest eigenvalue of (4).  

This eigenvalue λ1, identical for both equations, is the squared canonical correlation coefficient 
between 1

~x  and 1
~y .  Subsequent canonical variates are associated with decreasing eigenvalues and 

are uncorrelated with previous variates.  CCA will find as many pairs of canonical variates as the 
minimum of P and Q, the dimensionality of x and y, respectively. 

Alternatively, one may use PLS to find the canonical variates (scores) kx~  and ky~ .  It must 

be noted that, whereas CCA finds all the eigenvector pairs (loadings) ak and bk simultaneously, 
PLS operates sequentially, extracting one pair of loadings/scores at a time using a NIPALS 
algorithm [5].  Deflation of x and y in PLS is also performed sequentially, after the extraction of 
each pair of loadings/scores.  Furthermore, CCA maximizes the correlation coefficient between 
each pair ( kx~ , ky~ ) while PLS takes into consideration both correlation and variance in x and y [6].  

Both CCA and PLS versions of the drift-reduction algorithm have been implemented and are 
reported in this article.  
 
 
3.  Preliminary analysis 
 
The proposed drift-reduction method is evaluated on an odour database of four spices (ginger, red 
pepper, cumin and cloves) containing 374 examples collected during 24 different days over a 
period of three months.  The array consists of ten metal-oxide sensors from Capteur® (models 
AA14, AA20, G5, AA25, G7, LG9 and LG10) and Figaro® (models 2620, 2610 and 2611.)   

We perform a preliminary analysis by feeding the entire database to the drift-reduction 
algorithm.  The resulting correlation coefficients for each pair of latent variables ( )kk yx ~,~ρ  are 

shown in Figure 2.  This result indicates that PLS is able to reduce correlations between x and y 
with fewer components than CCA, a reasonable result since PLS performs deflation sequentially, 
after extraction of each “latent variable.”  The figure also suggests that there are 10 major 
canonical variates (interestingly, the same as the number of sensors), although Bartlett’s sequential 
test [4] indicates that there are 21 statistically significant variates. 
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Figure 2.  Correlation coefficient ( )kk yx ~,~ρ  for each pair of “latent variables” 
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To illustrate the performance of the algorithm, we select the first 10 “latent variables” and 

plot the trajectory of the four WTS features over time before and after drift reduction.  Figure 3 
shows these trajectories for the AA20 sensor.  Examples are sorted by class –notice the four 
distinctive blocks— and, within each class, by date.  Drift-reduced trajectories have been shifted 
vertically for visualization purposes.  Both CCA and PLS versions of the algorithm significantly 
reduce the linear component of the drift.  In other words, the algorithm is able to reduce drift-
related variance (noise) while preserving odour-related variance (information.)  It is also interesting 
to notice that the first WTS window is deflated almost entirely, a reasonable result since it is highly 
correlated with the last WTS window of the reference transient.  
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Figure 3.  Trajectory of WST features before and after drift reduction 

 
 
4.  Analysis of predictive accuracy  
 
A more interesting and formal assessment of performance is predictive accuracy, that is, the ability 
of a subsequent pattern classifier to correctly classify previously unseen test data.  In the context of 
drift-reduction, predictive accuracy should be measured by using test examples that were collected 
on different days than those used for training, as illustrated in Figure 4.  Formally, given a database 
collected over M days, we seek to classify data from day k using data from days i through j, with 
i<j<k.  We denote by W (width) the number of days used for training (W=j-i+1) and D (distance) 
the number of days between the training and test days (D=k-j.)  These two parameters, also shown 
in Figure 4, can significantly affect the predictive accuracy of a classifier: 

• With increasing values of W, the training set incorporates data from more days, which may 
allow a classifier to automatically average out the drift component. 

• With increasing values of D, the effects of drift accumulate on the test set, which may 
result in lower predictive accuracy. 
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Figure 4.  Illustration of W and D for predictive accuracy measurements 

 
To analyze the effect on predictive accuracy of these two parameters along with the 

proposed drift-reduction technique, we use a k-Nearest-Neighbor  (kNN) classifier [7].  This voting 
rule classifies an unlabeled example by choosing the majority class among the k closest examples 
in the training set.  Our implementation uses the Euclidean metric, with the number of neighbors 
being set to one-half the average number of examples per class in the training set.  To limit the 
“curse of dimensionality,” the feature vectors y and z are pre-processed with PCA, and the largest 
eigenvalues containing 99% of the variance are selected.  PCA eigenvectors are computed from the 
training set and then used to project test data.  Depending on the number of training examples (a 
function of W,) this results in 6 to 10 principal components being retained for y and 3 to 6 principal 
components for z.  As shown in the previous section, the drift-reduction algorithm significantly 
deflates the first WST feature, which explains why fewer principal components are required to 
total the same percentage of the variance. 

It must be noted that this new analysis is more challenging than the preliminary validation 
shown in Figure 3, in which the entire dataset (days 1 through 24) was passed to the algorithm.  In 
the more realistic scenario described in this section, only past training data (days i through j) and 
current test data (day k) are used to perform drift reduction.  Intuitively, with fewer training data, 
fewer “latent variables” should be used to deflate the odour vector y.  In fact, using ten “latent 
variables” yields only modest improvements in predictive accuracy compared to raw data.  After 
some experimentation, we determined that three was a suitable number of “latent variables.”  We 
also noticed that in order to eliminate the linear component of the drift (see Figure 3) it was 
necessary to incorporate timing information into the drift reduction algorithm, especially for large 
values of D.  For this reason, we decided to augment the regression vector x with the time stamp of 
each sample.  This had not been necessary in the previous section, where the entire sequence of 
days was presented to the drift-reduction algorithm.  With the selection of the first three “latent 
variables” and the addition of time stamps, we were able to obtain significant improvements in 
predictive accuracy, which are reported below. 

The effect of distance on predictive accuracy is shown in Figure 5 for different values of 
the width parameter.  As expected, the performance of the raw data decreases considerably with 
increasing distances (older training data.)  After the application of CCA- or PLS-based drift 
reduction, predictive accuracy does not decrease with distance, an indication that the algorithm is 
able to compensate for drift.  In fact, CCA and PLS present a slight increase in predictive accuracy 
with distance.  This counter-intuitive result could be attributed to the fact that both training data 
and unlabeled test data are used to estimate the drift model ypred=WOLSBy, making the slope WOLSB 
more accurate with increasing distances as a result of the time stamps.  This conjecture, however, 
deserves further attention. 
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Figure 5. Effect of Distance on predictive accuracy for different Widths 

 
 The effect of width is shown in Figure 6.  The three datasets yield higher predictive 
accuracy with increasing values of width (larger training sets.)  Higher slopes in the CCA and PLS 
curves indicate that the drift-reduction technique allows the subsequent pattern classifier to make 
better use of additional training data up to a saturation point of 95% predictive accuracy, which can 
be clearly observed in the rightmost plot of Figure 6.  No significant differences in predictive 
accuracy between CCA and PLS can be found in these two figures. 
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Figure 6.  The effect of Width on predictive accuracy for different Distances 

 
 
5.  Conclusions and future work 
 
We have proposed a drift-reduction algorithm that takes advantage of drift information contained 
in the pre-wash/reference stages of a typical sampling cycle.  The algorithm has been shown to 
reduce drift-related variance in the sensors and, therefore, enhance class discrimination and 
predictive accuracy of a subsequent pattern classifier. 

Our experience has shown that the predictive-accuracy performance of the algorithm is 
sensitive to the number of “latent variables,” which has been manually selected in the current 
implementation.  Automated selection of “latent variables” by cross-validation techniques 
constitutes the next natural step of this work.  Further improvements could be obtained by 
augmenting the regression vector x with temperature, humidity and mass flow information, as well 
as transient information from appropriate calibration mixtures that could be added to the sampling 
cycle.  Finally, the proposed algorithm is limited to linear dependencies between W/R and odour 
stages.  Non-linear extensions of CCA [8] and PLS [9] will be required for situations where these 
relationships are markedly non-linear. 
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