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Abstract 
Mass digitization of historical documents is a challenging 
problem for optical character recognition (OCR) tools. 
Issues include noisy backgrounds and faded text due to 
aging, border/marginal noise, bleed-through, skewing, 
warping, as well as irregular fonts and page layouts. As a 
result, OCR tools often produce a large number of spurious 
bounding boxes (BBs) in addition to those that correspond 
to words in the document.  This paper presents an iterative 
classification algorithm to automatically label BBs (i.e., as 
text or noise) based on their spatial distribution and 
geometry. The approach uses a rule-base classifier to 
generate initial text/noise labels for each BB, followed by 
an iterative classifier that refines the initial labels by 
incorporating local information to each BB, its spatial 
location, shape and size. When evaluated on a dataset 
containing over 72,000 manually-labeled BBs from 159 
historical documents, the algorithm can classify BBs with 
0.95 precision and 0.96 recall. Further evaluation on a 
collection of 6,775 documents with ground-truth 
transcriptions shows that the algorithm can also be used to 
predict document quality (0.7 correlation) and improve 
OCR transcriptions in 85% of the cases. 

Introduction� 
Optical character recognition (OCR) of historical texts in 
the hand-press period (roughly 1475-1800) is a challenging 
task due to the characteristics of the physical documents 
and the quality of their scanned images. Early printing 
processes (printing presses, mass paper production, hand-
made typefaces) produced texts with fluctuating baselines, 
mixed fonts, and varied concentrations of ink, among many 
other irregularities.  To make matters worse, the existing 
digital collections for documents of that period largely 
consist of binary (i.e., as opposed to grayscale), low-
quality and low-resolution images, the result of digitization 
from microfilm converted from photographs –four decades 
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and three generations away from the originals.   
Motivated by these issues, in 2013 we started the Early 

Modern OCR Project (eMOP; http://emop.tamu.edu) with 
funding from the Andrew W. Mellon Foundation. eMOP is 
a two-year mass digitization project that seeks to improve 
OCR for some 45 million pages from the Eighteenth 
Century Collections Online (ECCO) and Early English 
Books Online (EEBO) proprietary database products. Our 
goal extends beyond producing accurate transcriptions for 
these collections, and also aims to create tools 
(dictionaries, workflows, and databases) to support 
scholarly research at libraries and museums. Much like our 
team, these organizations lack the resources to manually 
transcribe their collections or contract with commercial 
OCR services (e.g., Prime Recognition Corp.)  As such, 
and as required by our sponsor, all tools used and produced 
by eMOP must remain free or open-source.  

As a step towards this goal, this paper describes an 
approach to assess the quality of historical documents that 
does not require image processing or human tagging.  As 
illustrated in Fig. 1, when a document has poor quality, the 
OCR engine generally produces a large number of spurious 
bounding boxes (BBs) in addition to those that correspond 
to words in the document. As we will show, it is possible 
to discriminate between noisy and text BBs by analyzing 
statistical differences in their shape, size, position and 
confidence score returned by the OCR engine.  This 
approach is advantageous for two main reasons. First, it 
does not require dedicated image processing algorithms 
(Farahmand, Sarrafzadeh et al. 2013), which can become 
prohibitive for large document collections. Second, the 
approach is language-agnostic because it relies exclusively 
on geometrical properties of BBs rather than the text 
transcription associated with them.   

In the sections that follow, we propose an iterative 
relabeling algorithm to classify BBs into text or noise, and 
validate it on a dataset containing 159 mid-to-poor quality 
documents (over 72,000 manually-labeled BBs).  Then, we 
illustrate how the algorithm can be used to obtain an 
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objective measure of document quality and improve OCR 
transcription performance by filtering out noise BBs before 
the document undergoes post-correction.   

Background & Related Work 
The ability to triage documents is critical in large-scale 
document digitization.  Document triage prevents heavily-
degraded documents from entering the OCR pipeline, and 
instead directs them elsewhere for additional processing 
(e.g., rescanning, image denoising). In these cases, quality 
is generally defined as an objective property of the 
document image, such as OCR accuracy, though subjective 
measures (e.g., Mean Opinion Scores) have also been used. 
Image features that have been found to correlate with OCR 
performance include global properties, such as the amount 
of black background speckle, image sharpness and 
uniformity, as well as local properties of the text, such as 
stroke thickness and continuity, and character/word height-
to-width ratio (Ye and Doermann 2013).  

A few studies have focused on improving OCR 
performance by pre-applying image restoration techniques, 
such as deblurring, skew removal, and bleed-through 
removal, to mention a few.  As pointed out by Lins et al. 
(2010), however, these techniques should not be blindly 
applied but should be used selectively based on the type of 
noise or degradation present in the document. For this 
purpose, the authors developed a method to identify five 
types of noise (bleed through, skew, orientation, blur and 
framing) based on image features such as palette, gamut, or 
number of foreground pixels. The authors found that the 
overhead of this noise-classifier was far lower than running 
the image through unnecessary filters. In related work, 
Sandhya et al. (2012) developed a taxonomy of image 
noises in historical documents that extends beyond the five 
categories of Lins et al. (2010). Their taxonomy considered 
four types of noise sources: aging, digitization and storage, 
physical factors (e.g., folding, burn, bleed-through) and 
document factors (e.g., varying fonts, mixed alphabets.) 
More recently, Farahmand et al. (2013) reviewed image 
processing techniques to remove ruled-line noise, marginal 
noise, clutter noise, stroke-line pattern noise, background 
noise, and salt-pepper noise.  

A number of studies have focused on post-correcting 
errors in OCR outputs by modeling typographical 
variations in historical documents; see (Reynaert 2008; 
Reffle and Ringlstetter 2013) and references therein. As an 
example, Alex et al. (2012) proposed two OCR post-
correction methods for the problems of end-of-line hyphen 
removal and substitution of long-s (recognized as f) to 
letter s (e.g. “fenfible” to “sensible”). Using dictionary-
based methods, the authors reported a 12.5% reduction in 
word error rates. For these techniques to be effective, 
however, noise BBs must be removed in advance.  

 
Fig. 1.  OCR output for an eMOP document; BBs shown in green  

Methods 
Our pipeline is based on the Tesseract open-source OCR 
engine available from Google (Smith 2007).  For each 
document image, Tesseract produces an hOCR data file (an 
open standard for formatted text from OCR) containing the 
layout and logical structure of the document, including the 
coordinates of the BB for each recognized word along with 
its text transcription and recognition confidence.  It is the 
hOCR file, not the underlying image, that we use for 
analysis.  Our overall approach for discriminating text and 
noise BBs is illustrated in Fig. 2.  The individual steps 
(pre-filtering, column segmentation, and local iterative 
relabeling) are described next. 

Pre-Filtering 
The first step in the process consists of generating initial 
labels for each of the BBs returned by Tesseract.  For this 
purpose we use a rule-based classifier that considers three 
features for each BB: word confidence, height-to-width 
ratio and area. The rules are derived as follows: 
� Rule 1:  OCR word confidence. BBs with very low or 

very high confidence predominantly consist of noise, 
and are flagged accordingly during pre-filtering.  

� Rule 2: Height-to-width ratio. Most words are written 
horizontally, so the height-to-width ratio is generally 
lower for word BBs than for noise BBs. Consequently, if 
this ratio is less than a threshold we label the BB as text; 
otherwise, we label it as noise.  

� Rule 3: Area. Tesseract has a tendency to misidentify 
speckles as legitimate text; fortunately, these areas are 
small as compared to normal text BBs. Accordingly, we 
label as noise all BBs in the lowest percentiles of the 
total area for the document. 
Thresholds for the individual rules are optimized 

simultaneously with a manually-labeled subset of the 
corpus; see results section.  The final filter is the 
conjunction of the three rules. BBs classified as text at this 
stage are used in the next stages to extract column layout 
and estimate the average font size of each document. 
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Fig. 2. Overview of the proposed BB classification method and 

features used for recognition at each stage 

 
Fig. 3.  Segmenting columns by identifying troughs in the 

horizontal distribution of BBs  

Fig. 4.  Finding nearest neighbors. Only those within      from 
the corners of the target BB (outlined) are considered.  Colors 

indicate the corner to which neighbors are assigned 

 Column segmentation 
Documents in the eMOP collection generally have multiple 
pages and/or columns, each with its own set of problems 
(e.g., degree of skew or noise).  For this reason, the second 
step in the process consists of dividing each image into its 
constituent pages and columns, so that each can be 
processed individually. First, we identify the leftmost and 
rightmost text BB from the pre-filtering stage; these 
coordinates define the text boundaries of the image. Then, 
we perform column segmentation by analyzing the 
distribution of BBs over the horizontal axis; the dominant 
troughs in this distribution define the column boundaries.  

To compute this distribution of BBs, we divide the 
horizontal axis with 1000 evenly-spaced points.  At each 
point, we trace rays from the top margin to the bottom 
margin with slopes in the range        in increments of 
    , then calculate the number of intersecting BBs for 
each ray. At each point, we then identify the ray with the 
fewest intersections, and that becomes the value of the 

distribution at that point.  Since images tend to have a large 
number of spurious BBs at the margins, any BBs in the top 
and bottom 20% are discarded. The overall process is 
illustrated in Fig. 3. 

Local iterative relabeling 
After each page has been split into columns, we apply an 
iterative relabeling algorithm to the BBs of each column. 
The rationale behind this final step is that BBs surrounded 
by text are more likely to contain text than those 
surrounded by noise.  Accordingly, for each of the four 
vertices of each BB we find its nearest neighbors (see Fig. 
4). Then, we calculate a weighted score,  , based on the 
label of each neighbor penalized by its distance: 

 ( )   ∑      
   
∑    
   

,    with      
    (   )  (1) 

where   is the index of the BB,   is the number of BBs 
within distance      from the vertices of  , and   is the 
maximum number of nearest neighbors considered (  
 ).    is the predicted label (0: noise; 1: text) for the k-th 
nearest neighbor, initially taken from the pre-filtering step. 
As illustrated in Fig. 4, the distance      limits the search 
area for nearest neighbors, preventing text BBs that are far 
from   to be considered in the computation.   The distance 
     is computed relative to     , the median height of 
text BBs found in the pre-filtering stage, plus a tolerance 
defined by     , their interquartile range; both statistics 
are computed for each individual column in the image: 

                 (2) 

where   defines the tolerance; the larger its value the more 
distant neighbors that are allowed in the computation of   
of eq. (1).  In our implementation, the value of   is 
optimized to minimize the mean-square error between 
  and the ground-truth label for all BBs in a training set.  

 The iterative process starts by initializing BB labels 
with those from the pre-filtering stage. From these labels, 
an initial score   can be computed for each BB.  This score 
is then combined with six additional features (see Table 1), 
and passed as an input to a multilayer perceptron (MLP) 
previously trained to classify BBs as either text or noise. 
The additional features include those used in pre-filtering 
(          ) as well as the BB position relative to the 
document margins, and its height normalized to      and 

Pre-
filtering

hOCR
file

Column 
segmentation

BB
labels

Local iterative 
relabeling

BB Area
BB H/W ratio
BB confidence 

Text BBs
*

BB relative height
BB neighbor text density
BB pre-filter features*

Leftmost 
text BB

Rightmost 
text BB

20% 
margin

20% 
margin

Trough

Table 1. Features used during local iterative relabeling 

Features Description 
  Score from nearest neighbors ; see eq. (1) 
     OCR word confidence* 
    Height-to-width ratio of BB* 
  Area of BB* 

      Normalized height:       (      )     ⁄  
      Horizontal distance from the middle of the page 
      Vertical distance from the top margin 

*available from the pre-filtering stage 
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    .  The resulting labels are used to re-compute   and 
the process is repeated until convergence, i.e., labels no 
longer change from one iteration to the next.  

 Results 

Datasets 
To test the proposed algorithm we generated three separate 
datasets (see Table 2) consisting of binarized document 
images from the eMOP collection, carefully selected to 
represent the variety of documents in the corpora. This 
included single column, multi-page and multi-column 
document images, as well as images with artifacts due to 
ink bleed-through, multiple skew angles, warping, printed 
margins, printed column separators, and pictures. Each BB 
returned by Tesseract for each of the document images in 
all three datasets was then manually labelled (i.e., 
text/noise) to generate ground truth data, for a total of 
72,366 BBs.  As labeling criteria, we considered as noise 
any BB that spanned more than two lines of text, as well as 
BBs around pictures, small speckles, and printed margins. 
The remaining BBs were labelled as text. To guard against 
differences in image size, the coordinates of BBs for each 
document were [0,1] normalized.   Dataset 1 was used to 
optimize thresholds in the pre-filtering stage whereas 
dataset 2 was used to optimize parameters   and P in the 
local iterative relabeling stage. Dataset 3 was used to cross-
validate the MLP and evaluate overall performance. 

Table 2 Datasets used for training and validation purposes 

Dataset # images % Text/Non-Text # BBs 
1 39 69/31 14,705 
2 34 71/29 15,896 
3 86 66/34 41,765 

Pre-filtering  
Fig. 5 shows the distribution of features for noise and text 
BBs in the documents from dataset 1. The distribution of 
normalized areas in Fig. 5a indicates that noise BBs tend to 
be smaller than text BBs, following our observations that 
Tesseract has a tendency to generate small spurious BBs 
whenever speckle noise is present in the image.  Shown in 
Fig. 5b, the distribution of OCR word confidence values 
for noise BBs is multimodal, with peaks near the extrema 
(0,1), whereas for text BBs it is normally distributed with a 
peak around 65% confidence. Finally, the distribution of 
H/W ratios in Fig. 5c shows clear differences between the 
two types of BBs, with text generally having a much lower 
H/W ratio, as could be anticipated.   

To optimize the threshold values for the three rules in 
the pre-filtering stage, we performed a receiver-operating-
characteristic (ROC) analysis of the binary classification 
problem on dataset 1. Namely, we performed exhaustive 

search for the word confidence (two thresholds), height-to-
width ratio and area thresholds (a 4–dimensional search 
space) to find the operating point with maximum F1-score 
on the precision-recall curve. The derived rules were: 

� Rule 1: If 0 <       < 0.95, then TEXT 
� Rule 2: If     < 2, then TEXT 
� Rule 3: If   > 1st percentile, then TEXT 

which, when used as a conjunction, yield a F1-score of  
0.93 (0.94 precision; 0.91 recall). Thus, pre-filtering can 
identify a significant number of noisy BBs, but it also 
mislabels a large proportion (9%) of text BBs in the 
documents. This is largely due to the fact that it does not 
consider information local to each BB, a problem that is 
handled by the last step in the process: local iterative 
relabeling. 

Column extraction  
The bottom panel in Fig. 3 illustrates the horizontal 
distribution of BBs for one of the images in the collection.  
The limits for the two columns in the document are clearly 
indicated by troughs in the distribution.  Fig. 6 shows 
segmentation results for two additional and more 
challenging documents due to noise and skew.   

Local iterative relabeling 
The MLP for the iterative process consisted of a hidden 
layer with 8 tangent-sigmoidal neurons, and 2 output 
neurons (i.e., one per class) with soft-max activation 
function to ensure MLP outputs could be interpreted as 
probabilities. The number of hidden units (    ) was 
optimized through three-fold cross-validation over dataset 

 
Fig. 5.  Feature distributions for BBs in dataset 1 

 
Fig. 6.  Column segmentation for two difficult test cases  
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3 with the F1-score as the objective function. Parameter   
in eq. (1), the maximum number of neighbors, was set to 
84 (21 per vertex), and parameter   in eq. (2), was set to 
10. These optimal values were extracted by minimizing the 
mean square error between   and the ground-truth label for 
all BBs in dataset 2. 

We also performed three-fold cross-validation over 
dataset 3 to compare model performance before and after 
iterative relabeling.  Results are summarized in Fig. 8a; 
precision, recall and the F1 score improve when compared 
to pre-filtering results on dataset 3, with the largest gains 
obtained for recall (from 0.89 to 0.96).  Fig. 8b summarizes 
the convergence rate; in 95% of the cases the algorithm 
converges within three iterations. 

Fig. 7 shows a document overlaid with the BBs returned 
by Tesseract. The fill color (green vs. red) represents the 
MLP prediction (text vs. noise, respectively), with higher 
color saturation denoting higher confidence; see color-bar 
insert. Arrows 1 and 2 illustrate two cases for which 
prediction was correct but the MLP had low confidence, 
hence the gray tone. Arrow 3 points to a BB that covers 
graphics and a decorative drop cap, neither of which is 
likely to lead to a good OCR transcription. Finally, arrow 4 
points to a BB that contains two lines of text; as such, the 
OCR transcriptions are likely to contain garbage.  

 

 
Fig. 7.  Iterative relabeling results for the image in Fig. 1. Color 

denotes MLP confidence: the more saturated, the higher the 
confidence.  Red: noise; green: text 

 
Fig. 8. (a) BB classification rate before and after local iterative 
relabeling; (b) Number of iterations required for convergence 

Deriving a measure of document quality 
As shown in the previous subsection, the classifier can 
label BBs as text or noise with remarkable accuracy, which 
suggests that it may be used to estimate the overall quality 
of each document. Low-quality documents tend to produce 
a large number of spurious BBs, whereas high-quality 
documents produce mostly text BBs.  Thus, the proportion 
of noise BBs returned by the OCR engine tends to be 
representative of the document’s quality: 

        
           
      (3) 

We evaluated this quality measure on a large dataset of 
6,775 document images from the EEBO collection that had 
manually-annotated transcriptions.  For each document, we 
computed the similarity     between the OCR output and 
the manual transcription: 

          (4) 

where     is the Jaro-Winkler distance (Winkler 1990), a 
measure of dissimilarity between the two text strings.  For 
the purpose of this work, we used the ‘juxta’ command-
line implementation of the Jaro-Winkler distance available 
in juxtacommons.org.   

Results in Fig. 9(a) show a strong negative correlation 
(              ) between the proposed noise measure 
(       ) and the Jaro-Winkler similarity (   ). Thus, as 
the proportion of noise BBs in a document increases, so do 
differences between OCR and manual transcriptions also 
increase.  The significance of this result is that     cannot 
be computed in practice since it requires the manual 
transcription, whereas         can be computed directly 
from the output of the OCR engine. As such, it may be 
used to automatically triage documents of poor quality and 
focus computational resources on those whose quality is 
more likely to generate good OCR transcriptions.  

Improving OCR transcriptions 
In a final step, we tested whether our algorithm could be 
used to improve the overall OCR performance.  For this 
purpose, we ran the algorithm on the previous dataset 
(6,775 documents), removed any BBs labeled as noise, and 
computed     between the resulting transcription and the 
manual transcription.  Results are summarized in Fig. 9(b) 
and Table 3.  On 85.4% of the documents the algorithm 
improved     (avg: +6.3%), whereas on 10.6% of the 
documents it lead to a decrease (avg: -3.0%).   

Lastly, we analyzed the impact of local iterative 
relabeling as a function of document quality; results are 
shown in Fig. 10. Regardless of document quality 
(       ), local iterative relabeling increases the Jaro-
Winkler similarity. These improvements are modest for 
high-quality documents (i.e., low        ), but become 
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quite significant (up to 0.25) for documents of poor 
quality, where they are most needed   

Discussion 
We have presented an approach to assess the quality of 
OCR using information about the spatial distribution and 
geometry of word BBs. The approach uses a pre-filtering 
step to initialize BB labels. From these, the document is 
segmented into columns by finding troughs in the 
horizontal distribution of BB coordinates. In a final step, 
an iterative filtering algorithm is used to incorporate local 
information from neighboring BBs. When cross-validated 
on a dataset of 159 historical document images, the 
algorithm achieves 0.95 precision and 0.96 recall.  

The pre-filtering step is designed to minimize false-
positive rates since noisy BBs can compromise the 
subsequent column-segmentation step.  As such, the pre-
filter tends to miss short text BBs (e.g., short words such as 
‘a’, ‘I’, ‘An’) since they violate rule 2. These initial 
labeling errors are corrected by the iterative relabeling 
algorithm, which also considers neighborhood information, 
the relative height of BBs relative to other BBs in the 
document, and their spatial location in the document. 
Relabeling generally converges within three iterations, a 
cost-effective investment considering the improvements in 
classification performance that it provides.  

When evaluated on a collection of documents with 
manual transcriptions, the proportion of BBs labeled as 
noise (       ) shows a strong correlation with OCR 
performance, measured as the Jaro-Winkler similarity 
between OCR and manual transcriptions. As such,         
may be used to triage heavily-degraded documents, 
allowing the OCR engine to focus on documents that have 
the highest chance of producing accurate transcriptions.  
Beyond triage, the spatial distribution of noise BBs may be 
used to provide additional diagnostics for poor-quality 
documents and direct them to the appropriate process (e.g., 
rescanning, image denoising).  As an example, salt-and-
pepper noise tends to generate a large proportion of small 
BBs, graphics generally result in large and overlapping 
BBs (see Fig. 7), and marginalia text (see Fig. 6) can be 
detected by the presence of high-confidence BBs outside 
the text boundaries.  This is particularly important in mass 
digitization efforts, such as early modern OCR project 
(eMOP) that motivates this work (Christy, Auvil et al. 
2014), where indiscriminate application of image 
restoration algorithms is prohibitive.  

Whenever additional pre-processing (e.g., image 
restoration) is not viable, our algorithm may still be used to 
boost OCR accuracy by filtering out noise BBs before the 
document is submitted for linguistic analysis to correct 
character recognition errors against historical dictionaries 
and n-gram models.  As illustrated in Table 3 and Fig. 10, 

this simple filtering step can lead to significant gains in 
OCR performance: an average of 6.3% improvement for 
85.4% of the documents analyzed. Additional 
improvements in BB labeling may be obtained by using 
information from linguistic processing as additional 
features for the MLP. Denoising then would become an 
iterative process throughout the post-processing pipeline of 
improving OCR transcriptions for degraded page images.  

Conclusion 
Our results indicate that the standard output from an OCR 
engine (spatial distribution, geometry and confidence of 
bounding boxes) provides sufficient information to (1) 
accurately identify text and noise in a document image, (2) 
estimate the document’s overall quality, and (3) improve 
OCR transcription performance.  This an important result 
for mass digitization projects, where dedicated image 
processing becomes prohibitive.  

 
Fig. 9 (a) BB-based quality measure (       ) vs. the Jaro-

Winkler similarity (   ) for 6,775 documents. (b)     before and 
after iterative relabeling; for most documents (those above the 

diagonal line) iterative relabeling improved      

Table 3 Average change in Jaro-Winkler similarity ( ) with 
application of the local iterative relabeling algorithm  

             
% documents  85.4 10.6 4.0 
Avg. change 6.3 3.0 0.0 

 
Fig. 10 Average change in Jaro-Winkler similarity as a function 

of document quality (       ). 
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