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ABSTRACT 

Active sensing enables a sensor to optimize its tunings on-the-fly 

based on information obtained from previous measurements. When 

applied to networks of distributed sensors, however, active sensing 

becomes computationally impractical due to the combinatorial 

number of sensing configurations. To address this problem, we 

present an active decomposition and sensing (ADS) method that 

combines the advantages of classifier decomposition with those of 

active sensing. Namely, we use class posteriors to decompose the 

problem across the sensors in the network. Each sensor then 

applies active sensing to select the next tuning to solve its specific 

subproblem. As a result, the method scales linearly (rather than 

combinatorially) with the number of sensors. We validate ADS on 

a database of infrared absorption spectroscopy containing 50 

chemicals. Our results show that active decomposition improves 

classification performance and reduces sensing costs when 

compared to using active sensing only at the node level.   

Index terms– Active sensing, chemical sensing, sensor 

networks. 

1. INTRODUCTION 

The response of chemical sensors is generally measured as a 

change in a particular physico-chemical property: absorption at a 

specific wavelength, or conductivity at a particular operating 

temperature. In many cases, however, additional information can 

be extracted by modulating some internal property of the sensor. 

As an example, measuring the conductivity of a metal-oxide 

(MOX) sensor over a range of temperatures provides a wealth of 

information. This additional information comes at a cost (e.g., 

sensing times, power consumption), so feature-subset selection 

(FSS) techniques are commonly used to identify a subset of the 

most informative sensor tunings. 

Over the past decade, a number of investigators have explored 

active sensing techniques as an alternative approach to sensor 

optimization. In contrast with FSS, where the sensor tunings are 

hardcoded, active sensing can adapt the sensor tunings in real-time 

based on information obtained from previous measurements. 

Previous work has shown that active sensing can achieve higher 

classification performance than FSS while using a fraction of the 

sensing configurations and lower power consumption, and also 

provides a trade-off between sensing costs and classification 

performance [1, 2]. Unfortunately, these active sensing techniques 

do not scale up to networks of distributed sensors because of the 

combinatorial explosion in the number of sensing configurations.   

In this article, we present an active decomposition and sensing 

(ADS) algorithm suitable for networks of tunable sensors. ADS 

borrows concepts from classifier decomposition [3] and our prior 

work on active sensing with single tunable sensors. In a first step, 

ADS decomposes the classification problem into independent 

subproblems using a seeding strategy based on the posterior 

probability of each class, and then distributes the subproblems 

among the sensors in the network. In a second step, ADS applies 

active sensing to select the operating configuration for each sensor 

to solve its assigned subproblem. In a final step, ADS combines 

information from each sensor to update the posterior of each class, 

and the cycle repeats until convergence. In this way, the 

computational complexity of ADS scales linearly with the number 

of sensors in the network (rather than combinatorially). We tested 

the method on a database of infrared spectra with varying network 

sizes and number of sensing steps. 

The rest of the paper is organized as follows. Section 2 

provides a short note on related work. In section 3, we describe our 

proposed methods. In section 4, we present the experimental work 

and results. We conclude the paper with a discussion and directions 

for future work in section 5. 

2. RELATED WORK 

Active sensing has had a long history in robotics [4, 5] and 

computer vision [6, 7], but its application in chemosensing has 

been rather limited. In one of the earliest studies, Nakamoto et al. 

[8] developed a method for active odor blending, where the goal 

was to reproduce an odor blend by creating a mixture from its 

individual components. The authors developed a control algorithm 

that adjusted the mixture ratio so that the response of a gas sensor 

array to the mixture matched the response to the odor blend. Our 

initial work on active sensing [1] focused on classification of 

volatile chemicals using a temperature-modulated metal oxide 

sensor. In this work, we modeled the sensor dynamics with an 

input-output hidden Markov model, and used a partially observable 

Markov decision process (POMDP) to select sensor tunings in real-

time. In later work, we extended this approach to concentration-

independent discrimination of chemical samples with tunable IR 

interferometers [9]. Also recently, Dinakarababu et al. [10] 

developed an adaptive spectrometer for rapid classification of 

chemicals. Unlike a traditional spectrometer, this device contains a 

tunable spectral filter (a digital micro-mirror device) that can select 

a given set of certain spectral bands and direct them onto the 

detector. Based on previous measurements, the bands are chosen to 

focus on spectral portions that are most useful for classification. 

Our work is also related to previous research on sensor 

scheduling in large sensor networks. Tharmarasa et al [11] 

developed an algorithm to select subsets of sensors from a large 

wireless networks to track multiple targets. The appproach was 

based on convex optimization with sequential quadratic 

programming. Additional work includes load allocation algorithms 

to schedule sensors for signal measurement and reporting tasks 

[12], and node scheduling algorithms for maximizing sensor 
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coverage [13]. Due to the distributed nature of sensor networks, the 

focus of these papers is to minimize data transmission  and 

communication costs.  

Contribution and relation to prior work: This paper presents 

an active sensing approach for classification with a network of 

distributed chemical sensors. The approach builds on our previous 

work on active sensing for classification with individual sensors [1, 

9], but extends it to scenarios where measurements can be acquired 

simultaneously by multiple tunable sensors. This requires a 

reformulation of the problem to avoid combinatorial explosion.   

Our work also relates to previous research on sensor selection and 

scheduling in wireless networks [11, 12]. In those papers, however, 

the sensors are assumed to be passive (i.e., each sensor works at a 

fixed configuration and provides a single measurement), whereas 

our approach considers the case when sensors are tunable. 

3. METHODS 

Consider a network of   tunable chemical sensors   
〈          〉, where each sensor    can be operated at   distinct 

configurations   〈          〉 and all sensors in the network 

are nominally identical. The sensor network is exposed to a volatile 

chemical, and the goal is to determine the identity of the chemical 

from a list of   possible targets   〈          〉. To solve this 

problem, the sensors are operated by a centralized controller, which 

can adjust the configurations of each sensor and collect their 

responses. Namely, the goal of the controller is to find an optimal 

sequence of   action vectors { ( )  ( )    ( )}, where each 

action vector  ( ) corresponds to simultaneously operating   

sensors (or a subset of them), each sensor at a particular 

configuration, and measuring their responses. A naïve active 

sensing approach would search through all possible sensing 

configurations (  ) at each time step, evaluate their expected 

information content, and select the best configuration. Clearly, this 

approach will only work for small networks with few sensor 

tunings.  

To avoid this combinatorial explosion, our approach consists of 

dividing the problem and distributing it among the   sensors. Our 

algorithm works in three steps, as illustrated in Figure 1. In a first 

step, we decompose the classification problem into   mutually 

exclusive subproblems. In a second step, we apply active sensing 

on each sensor to select its next tuning. In a final step, the 

controller combines the response from all sensors, and updates the 

posteriors associated with each class. A detailed description of 

these three steps follows. The overall algorithm is summarized in 

Table I. 

3.1. Classifier decomposition 

Given the distribution  ( )  {  ( )   ( )     ( )}, where   ( ) 
is the posterior probability of class    at time   given all previous 

measurements from all sensors   { ( )  ( )   ( )}, we use a 

seeding strategy to divide the classification problem into   

subproblems, one subproblem per sensor. Namely, we rank the 

classes according to their posteriors and then group them into   

subproblems, where the     subproblem consists of discriminating 

among the    , (   )  , (    )   most likely classes. In this 

fashion, each subproblem has a maximum of ⌈  ⁄ ⌉ classes. This 

decomposition method has two advantages. First, because the 

subproblems have similar levels of complexity, the classification 

problem is distributed relatively uniformly across the network. 

Second, it reduces the complexity of each subproblem because it 

combines classes that are significantly different from each other 

given the current observations1.   

In our experience, it normally takes a few time steps for the 

posterior to be dominated by a handful of classes. In these cases, it 

is more efficient to focus the search on the most promising classes. 

For this reason, at each iteration we prune out those classes whose 

posteriors fall below a predefined threshold  . The resulting class 

space becomes  ( )  {       ( )   }, with cardinality   ( ) . 
To ensure each subproblem has a minimum of two classes, once 
  ( )    , we create only ⌊  ( )  ⁄ ⌋ subproblems and 

distribute them to a subset of the   sensors; this allows us to 

reduce sensing costs further.  

3.2. Active sensing 

Once the subproblems are distributed across the network, we apply 

active sensing at each sensor to select their next configurations. 

Assuming sensor    has been assigned a subproblem consisting of 

classes            with posteriors 

 (  ( )  {  ( )   ( )     ( )}, we select the next configuration 

for    such that uncertainty in  (  ( ) is minimized. To do this, we 

first estimate the expected reduction in entropy in  (  ( ) if sensor 

   was operated at configuration   : 

 (     )   ( 
(  ( ))   ( (  (   )|     ) (1) 

Then, we select the configuration with the maximum expected 

reduction  (  ( )           (     ). We repeat this process for 

each sensor to create the action vector  ( ). While doing so, we 

track the configurations that were previously used to avoid 

repetition. 

The term  ( (  ( )) in eq. (1) is the entropy of  (  ( ), and 

 ( (  (   )      ) is the expected entropy when    is operated at 

  . We compute expected entropy as the average over all possible 

observations, weighted by the probability of each observation2: 

 ( (  (   )      )

 ∑ ( |     ) ( 
(  ( 

  

  )        ) 

(2) 

where the term  (       ) is the probability of obtaining response 

  from    at   , irrespective of the class label.  

3.3. Sensor fusion 

Once the sensors have been driven with action vector  ( ), the 

controller combines the responses obtained from all the sensors 

                                                                 
1 As an example, given a problem with 20 chemicals and 5 

sensors, the first sensor is assigned a problem that contains the 

most likely class, the 6th most likely class, the 11th most likely 

class, and so on.  
2 Eq. (2) is only applicable for discrete observational spaces. 

For continuous spaces, it becomes an integration problem. 

Therefore, during the training stage, we uniformly discretize the 

sensors’ observational spaces. 

 
Figure 1 – An overview of the proposed method. 
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 ( ) and updates the posteriors associated with each class using the 

sequential Bayesian update equation:  

  (   )  
  ( ) ( ( )     ( ))

 ( ( ))
 (3) 

where  ( ( )     ( )) is the probability of obtaining observation 

vector  ( ) when the network is exposed to chemical    and 

driven with action vector  ( ). This value is obtained by 

combining probabilities of responses obtained at each sensor3. The 

denominator in eq. (3) is a normalization constant that ensures the 

posteriors sum to one.  

At    , the controller initializes the posteriors uniformly 

  ( )    ⁄ . The controller brings the sensing process to a halt in 

two cases: (1) when   sensing steps are completed, or (2)   ( )  
 . In either case, the final class label is declared based on 

maximum a posteriori (MAP) criterion as: 

           
     

  ( ) (4) 

4. EXPERIMENTAL RESULTS  

We validated the ADS algorithm on a simulated network of tunable 

Fabry-Perot interferometers (FPI) [15, 16]. An FPI consists of two 

partially reflective parallel mirrors forming an optical resonance 

cavity. An FPI demonstrates constructive interference4 when the 

distance between the mirrors is an integer multiple of half the 

wavelength of the incident waves. Thus, by changing the distance 

between the mirrors, an FPI can be tuned to different wavelengths. 

                                                                 
3 During the training stage, we use Gaussian mixture models 

(GMMs) [14] to learn the probabilistic distribution of the sensor 

responses to different chemicals at different operating 

configurations.   
4 Constructive inference is an optical phenomenon where two 

waves superimpose resulting in a wave of higher amplitude.  

The spectral range and tuning efficiency (resolution) of FPIs is 

limited by the mirror’s reflection coefficients, spectral range of the 

infrared source, and physical limitations in micro-actuation. FPI is 

a low-cost portable alternative to Fourier Transform Infrared 

Spectroscopy (FTIR)5, though with much lower spectral resolution 

and range.  

4.1. Data 

We simulated the response of an FPI to different chemicals using 

data from NIST chemistry WebBook [17]. This database provides 

high resolution (250 points per   ) FTIR spectra in the 

wavelength range of 3-21   for over 16,000 chemicals. We chose 

50 chemicals from this database that have strong absorption peaks 

in the range 8-10.5  , and down-sampled the spectra to 116 

spectral lines. This is similar to operating range and spectral 

resolution of commercially available FPI sensors (LFP-80105-337; 

Infratec, Inc). Resulting spectra are shown in Figure 2. Using these 

spectra, we generated 10 samples per chemical by adding Gaussian 

noise (      ) at each wavelength, and used the resulting dataset 

(500 spectra) as a training set. We tested ADS with varying number 

of sensors and sensing steps. 

We compared ADS against two baseline methods. The first 

baseline method (AS) can be thought of as a naïve active sensing 

approach. AS operates in a similar manner as ADS, but it does not 

decompose the classification problem. Instead, at each time step, 

                                                                 
5 FTIR extensively used for chemical analysis, but is limited to 

laboratory settings due to its cost, size, and power requirements. 

Table I – Pseudo-code of the ADS algorithm 
Step 1: Initialization 

- Initialize posteriors:   ( )  
 

 
  

- Initialize the list of available configurations:  ( )    
Step 2: Classifier decomposition  

- Class pruning  ( )  {       ( )   } 
o if   ( )   , distribute  ( ) among the 

sensors 
o else, declare class label      

Step 3: Active sensing 
- For each sensor    

o Select next action to minimize entropy: 

 (  ( )            ( )  (     ) 

o Remove action from the list:      (  ( ) 
o Apply action vector    to obtain observation 

vector    
Step 4: Update class posteriors 

- For each classs    
o   (   )    ( ) ( ( )     ( )) 

Step 5: Stopping criterion 
- if      

o       
o Go to step 2 

- else declare class label      

 

 
Figure 2 – Absorption spectra all the chemicals as a function of 

wavelength. For visualization purposes, the spectra are plotted with 

an offset along the y-axis. 
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all sensors in the network are assigned the same classification 

problem containing   ( )  classes. The second baseline method 

(PDAS; passive decomposition-active sensing) also operates in a 

similar fashion as ADS, except that it does not consider class 

posteriors while decomposing the classification problem. Instead, 

PDAS decomposes the problem according to the class labels (e.g., 

sensor    is assigned classes          ⌈   ⌉, sensor    is 

assigned classes  ⌈  ⁄ ⌉    ⌈  ⁄ ⌉      ⌈   ⁄ ⌉ etc.) Note that the 

three methods (ADS, AS, and PDAS) are equivalent for    .  

4.2. Performance vs. sensing steps 

We tested the performance of ADS, AS, and PDAS with varying 

number of sensing steps        on three network sizes 

(       and   sensors). We tested the three methods on 500 test 

samples (10 per chemical), where the samples contained an 

additive Gaussian noise (     ). The classification performance 

for the three methods is summarized in Figure 3.  

For     sensors, classification performance for all methods 

increases from 31.8% (ADS and PDAS), and 10.9% (AS) after one 

sensing step to 91.8% (ADS), 90.8% (PDAS), and 90.4% (AS) 

after 10 steps. The proposed algorithm (ADS) consistently 

outperforms both baseline methods (AS, PDAS) for all sensing 

steps. Differences between ADS and PDAS are more evident in the 

initial time steps; as additional sensing steps are taken, the 

cumulative feature sets selected by the two methods converges to 

the full set, thus reducing their differences. This is also the case for 

AS, which is surpassed by ADS and PDAS during the initial steps 

but later converges to the same performance level.  

We observed similar behavior with      and     sensors, 

though the difference between ADS and PDAS becomes smaller. 

Classification performance for both methods during the first time 

step also increases (34.6% for    ; 49.8% for    ) when 

compared to     sensors (31.8%). The main reason for this 

improvement is that both methods acquire more features per time 

step because of the increase in the number of sensors. As expected, 

the performance of AS does not change significantly with the 

number of sensors in the network. 

We also analyzed the average number of sensors used by each 

method as a function of the number of sensing steps. The results 

are summarized in Figure 4. For    , all methods use the 

available two sensors at the first sensing step. However, with 

increasing number of sensing steps, the average number of sensors 

used reduces to 0.97 (ADS), 1.08 (PDAS), and 1.7 (AS) at     . 

Among the three methods, ADS consistently uses the fewest 

number of sensors at all sensing steps, thus minimizing the sensing 

costs. We observed similar trends with     and     sensors. 

However, with increasing number of sensors, the difference 

between ADS/PDAS and AS becomes more prominent.  

5. DISCUSSION AND FUTURE WORK 

This paper has presented an active decomposition and sensing 

(ADS) method for classification with a distributed network of 

tunable chemical sensors. Our results show that ADS obtains better 

classification performance while using fewer sensors than two 

baseline techniques: an active sensing approach without 

decomposition (AS), and an active sensing approach with passive 

decomposition (PDAS).  

In the AS baseline method, all sensors in the network use the 

same configuration at each sensing step because they are assigned 

the same problem. This allows AS to improve signal-to-noise ratio 

by averaging out uncorrelated noise across the   sensors. Though 

ADS and PDAS do not have this advantage, the decomposition 

step allows them to acquire complementary information from 

different sensors, and therefore obtain better classification rates. 

The benefits of performing classifier decomposition diminish as 

additional sensing steps are taken, to where AS performs 

comparably to ADS and PDAS at the latter stages of sensing 

(Figure 3). This is to be expected, since the three methods must 

ultimately converge to the same feature set. Though Figure 4 

shows the number of sensors used at each time, it also reflects the 

number of classes in contention at each sensing step (  ( ) ). With 

this in mind, the results in Figure 4 show that ADS can prune 

classes at a faster rate than PDAS. This can be attributed to the 

seeding strategy used by ADS, which combines the more likely 

classes with the less likely classes. As a result, less likely classes 

are eliminated at earlier sensing steps.  

Several aspects of the model need improvement and thus 

warrant future research. First, ADS is myopic in nature, i.e. it looks 

only one step ahead while estimating the expected reduction in 

entropy. Non-myopic extensions would optimize over multiple 

sensing steps, though at a computational cost. Second, our method 

uses a seeding strategy to generate (   )-ary subproblems. Other 

decomposition schemes such as one-versus-all, pair-wise coupling 

[18], error correcting output codes (ECOC) [3] could also be used. 

Finally, our study assumed that the concentration of the target 

chemical remain constant across sensors. Additional work is 

needed to address situations where chemical concentrations change 

both with time and sensor location, as is likely to be the case in 

actual deployments of sensor networks.   

Our study demonstrated the effectiveness of ADS on an off-

line dataset of infrared absorption spectroscopy. Work in our group 

is underway to validate the method on experimental sensor data.  
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Figure 3 – Classification performance of ADS, PDAS, and AS, as a 

function of the number of sensing steps for (a)    , (b)    , 

and (c)    . 

 
Figure 4 - The average number of sensors used by ADS, PDAS, 

and AS as a function of the number of sensing steps for (a)    , 

(b)    , and (c)    . 
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