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Abstract. We present a data-driven probabilistic framework to model the transient response of 
MOX sensors modulated with a sequence of voltage steps. Analytical models of MOX sensors 
are usually built based on the physico-chemical properties of the sensing materials. Although 
building these models provides an insight into the sensor behavior, they also require a thorough 
understanding of the underlying operating principles. Here we propose a data-driven approach to 
characterize the dynamical relationship between sensor inputs and outputs. Namely, we use 
dynamic Bayesian networks (DBNs), probabilistic models that represent temporal relations 
between a set of random variables. We identify a set of control variables that influence the 
sensor responses, create a graphical representation that captures the causal relations between 
these variables, and finally train the model with experimental data. We validated the approach on 
experimental data in terms of predictive accuracy and classification performance. Our results 
show that DBNs can accurately predict the dynamic response of MOX sensors, as well as 
capture the discriminatory information present in the sensor transients.  
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METHODS AND RESULTS 

Bayesian networks (BNs) are directed graphical models that represent conditional 
dependencies among a set of random variables. Dynamic Bayesian networks (DBNs) 
are an extension of BNs specifically aimed at modeling temporal relations between 
these random variables. Our sensor model uses four random variables , 
where  is the voltage step applied to a MOX sensor heater,  is the time elapsed from 
the edge of a voltage step,  is an unobserved variable that captures the underlying 
state of the sensor, and  is the sensor response. FIGURE 1 (a) shows a graphical 
representation of the DBN. We validated this model with a Figaro TGS 2600 MOX 
sensor exposed to three analytes: acetone, ammonia, and isopropyl alcohol. We 
serially diluted these chemicals to identify concentrations at which the isothermal 
responses were similar; this ensured that the three chemicals could not be trivially 
distinguished. We collected sensor responses (sampled at 1Hz) to 150 random voltage 
sequences, 50 sequences per analyte, and eight voltage steps per sequence. We build 
three DBN models (one per chemical) using 60 voltage sequences (20 per chemical) as 
training data, and tested on the remaining 90 sequences. We estimated the 
performance in terms of predictive accuracy (i.e., model response to a voltage 
sequence vs. actual sensor response) and classification rate (maximum likelihood 



criterion) on test sequences. To establish the influence of step duration, we repeated 
this experiment for  sec, 2  sec and 4  sec, where  = 5sec is three times the sensor  
time constant. FIGURE 1 (b) shows a comparison between the signal predicted by the 
model and the original response of the sensor. FIGURE 2 (a) shows the average 
absolute errors in prediction along the 20 sec transient. This result indicates that model 
predictions are less accurate at the beginning of the voltage steps. Our preliminary 
analyses also suggest that errors are higher when the sensor is heated to a higher 
temperature as opposed to when it is cooled down (data not shown). Finally, we also 
tested the classification performance of the models as a function of the duration and 
number of voltage steps (FIGURE 2 (b)). As expected, the classification rate increases 
with increasing number of steps as well as with step duration. In particular, there 
appears to be a significant difference in performance between 10s and 20s steps, 
suggesting that steps of at least 15 second duration are needed to fully extract 
information from the sensor transients.  

  
FIGURE 1. (a) Graphical representation of the DBN showing two time slices. (b) DBN model 

predictions vs. actual sensor response to a random sequence in the presence of IPA (SNR= 37 dB). 

  
FIGURE 2. (a) Average absolute prediction errors along a 20 sec step. Errors are the highest in the 
early part of the transient, when the sensor is rapidly heating or cooling down. (b) Classification rate 

obtained by the DBNs on a three-class problem as a function of the number of steps and step durations. 
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