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Abstract. We present an active-perception strategy to optimize the temperature program of metal-oxide sensors in real
time, as the sensor reacts with its environment. We model the problem as a partially observable Markov decision
process (POMDP), where actions correspond to measurements at particular temperatures, and the agent is to find a
temperature sequence that minimizes the Bayes risk. We validate the method on a binary classification problem with a
simulated sensor. Our results show that the method provides a balance between classification rate and sensing costs.
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I. INTRODUCTION

Previous resecarch has shown that modulating the
working temperature of metal-oxide sensors can give
rise to gas-specific temporal signatures that provide a
wealth of discriminatory and quantitative information
[1]. A number of empirical studies with various
temperature waveforms (e.g. rectangular, sine, saw
tooth, and triangular) and stimulus frequencies have
been published [2-4], but only a handful of authors
have approached the problem in a systematic fashion.
Kunt et al. [5] developed a computational method to
optimize the temperature profile in binary
discrimination problems. The authors used a wavelet
network to obtain a dynamic model of the sensor from
experimental data, followed by an optimization
procedure that found the temperature profile that
maximized the distance between the two gas
signatures. More recently, Vergara et al [6] proposed
a system-identification method for optimizing
temperature profiles. In their method, a pseudo-
random binary sequence was used to drive the sensor
heater while the sensors were exposed to various
chemicals. The authors then estimated the frequency
response of the sensor to each individual chemical, and
selected a subset of the most informative frequencies.
Both approaches, however, required that the
temperature program be optimized off-line. Here we
propose an active-sensing approach that can optimize
the temperature profile on the fly, that is, as the sensor
collects data from its environment. The method can

also determine when sensing should be terminated in
order to make a final classification; this is achieved by
comparing the cost of measuring the sensor response at
additional temperatures against the expected reduction
in Bayes risk from those additional measurements.
These capabilities are important not only to improve
detection performance, but also to meet the increasing
power constraints of real-time embedded applications
as well as extend sensor lifetimes.

We model the problem as a decision-theoretic
process, where the goal is to determine the next
temperature pulse to be applied to the sensor based on
information extracted from the sensor response to
previous temperature pulses. Our method operates in
two stages. First, we model the dynamic response of
the chemical sensor to a sequence of temperature
pulses as an Input-Output Hidden Markov Model
(IOHMM) [7]. Then, we formulate the process of
finding the ideal sequence of temperature pulses as a
POMDP [8]. By assigning a cost to each temperature
pulse and a cost for misclassifications, the POMDP is
able to balance the total number of temperature pulses
against the uncertainty of the classification decisions.

The paper is organized as follows. In section I we
formulate the problem and show how IOHMMs can be
used to model the dynamic response of a sensor.
Section III describes the optimization of temperatures
as an active sensing problem with POMDPs. Section
IV provides experimental results on a dataset from a
simulated metal-oxide sensor. The article concludes
with a brief discussion and directions for future work.
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II. PROBLEM STATEMENT

Consider the problem of classifying an unknown
gas sample into one of A known categories
{o®, 0@, ..., 0™} using a metal-oxide sensor with
D different operating temperatures {p,, p5, ..., pp}. T0
solve this sensing problem, one typically measures the
sensor’s response at each of the D temperatures, and
then analyzes the complete feature vectorx =
[x1, %5, ..., xp]T with a pattern-recognition algorithm
[9]. Though straightforward, this “passive” sensing
approach is unlikely to be cost-effective because only
a fraction of the measurements are generally necessary
to classify the chemical sample. Instead, in active
classification we seek to determine an optimal
sequence of actions a = [a,,a,, ...,ar], where each
action corresponds to setting the sensor to one of the D
possible temperatures (or terminating the process by
assigning the sample to one of the A/ chemical
classes). More importantly, we seck to seclect this
sequence of actions dynamically, based on
accumulating evidence. Our proposed solution to this
problem is based on Ji and Carin [10].

A. Modeling the Sensor

Given a chemical from class w(®, we model the
steady-state response of the sensor at temperature p;
with a Gaussian mixture:
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where M; is the number of mixture components, and
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mi
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vector and covan'ance matrix of each mixture
component for class w(®, respectively. Given a
sequence of actions [a4, a,, ..., ar]., we assume that the
sensor transitions through a scries of states s =
[s1,S3,...,5¢] to produce a corresponding observation
sequence 0 = [0, 0,, ..., 07]. Each state s; represents
a mixture component in eq. (1) and is therefore hidden.
Following Ji and Carin [10], we model the sensor
dynamics with an IOHMM, a generalization of the
traditional hidden Markov model (HMM) [11]. An
IOHMM conditions the next state in a sequence not
only on the previous state (as in a first-order HMM)
but also on the current input to the sensor. In our case,
this additional input consists of sensing actions (i.c.
temperature steps).

Formally, an IOHMM can be defined as a 6-tuple
{S,A4,0,7,7, 4} where S is a finite set of states, each
state corresponding to a mixture component in eq. (1),
A is a finite set of discrete actions, each action
corresponding to selecting one of D sensor
temperatures, O is a set of observations, each

arc the mixing coefficient, mean
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corresponding to the sensor’s response at a given
temperature, 7(s) is the initial state distribution,
1(s'|s,a) is the state transition function, which
describes the probability of transitioning from state s
to state s’ given action a, and #(o|s) is the observation
function, which describes the probability of making
observation o at state s. We train a separate [OHMM
for each individual chemical class, i.e. by driving the
chemical detector with a random sequence of actions
in the presence of the chemical, and recording the
corresponding responses; for details see [7].

ITII. ACTIVE CHEMICAL SENSING
AS A POMDP

We define a POMDP as a 7-tuple
{S,A4,0,b,,T,0C}, where S, A, and O are the finite
set of states, actions and observations from the
IOHMMSs respectively, by (s) is an initial belief across
states, T(s'|s,a) is the probability of transitioning
from state s to state s’ given action a, (2(o|s) is the
probability of making observation o at state s, and
C(s,a) is the cost of executing action a at state s.
These POMDP parameters can be obtained directly
from the IOHMM as follows:

= Initial belief: bo(s) = p(w @)z (s); s € S©

» State  transition:  T(s'|s,a) = T (s'|s, a);
s,s" € SW: zero otherwise'.

= Observation model: £X(o|s) = ¢“(o|s); s € S©

The POMDP stores information about the state of
the system in a belief state by(s), a probability
distribution (across states from all the IOHMMs) given
the initial belief b,(s) and the history of actions
[a; ...ar] and observations [o; ... 07]:

br(s) = p(sloy ... 0r,a; ...ar, by) = @
p(slor,ar, br_q)

The second equality above reflects the fact that
br(s) is a sufficient statistic for the history of the
system, which allows us to update by (s) incrementally
from its previous estimate by_,(s) by incorporating
the latest action a, and observation oy :

b (SI) _ P(0T|5 aT)ZsP(S |aT5)bT 1(5)

p(orlar,br—1)
Xolsr) s T(s!]s,a) br—1(5)

u
where the denominator p = p(or|ar, br_,) can be
treated as a normalization term to ensure that by (s")
sums up to 1, and all terms in the numerator are known
from the POMDP/IOHMM model.

)

! This ensures that transitions from the IOHMM of one class onto
another class are not allowed, since we assume that the chemical
stimulus does not change over time.



Using this POMDP formulation, the problem
becomes one of finding a policy that maps belief states
into actions so as to minimize the expected cost of
sensing. We consider two types of actions:

»  Sensing actions (a = p;), which correspond to
setting the sensor to temperature p;. Sensing
actions have a cost of ¢(s,a = p;) = ¢;, which
reflects the fact that certain temperatures may be
more expensive (¢.g. draw more power).

= (lassification actions (a = p.), which assign the
sample to a particular class. Classification
actions are terminal; their cost is (s,a = p,) =
Cow (VSE€S®)  which represents a
misclassification penalty whenever u # v.

A. Finding the Sensing Policy

Unfortunately, the problem of finding an exact
solution for a POMDP policy is P-SPACE complete
and therefore intractable for most problems.
Moreover, a standard POMDP solution allows
repeated actions (measuring the response of the sensor
at the same temperature multiple times), which is
undesirable in our case. For these reasons, we employ
a myopic policy [10] that only takes sensing action if
the cost of sensing (c;) is lower than the expected
future reduction in Bayes risk. Given belief state
b7 (s), the expected risk of a classification action is:

RC(bT (5)) — minu Zv Cuv Zses(v) bT (5) “)
where u corresponds to the class with minimum Bayes
risk (3, Cup Dices) br(s)). In turn, the expected risk
of a sensing action is:

Rs(br(s),a) =
2\7’0 IIliIlu (Zu Cuv Zsres(”) Zs p(OlS’, a)P (Srlsl a) bT(S))
which averages the minimum Bayes risk over all
observations that may result from the action. Hence,
the utility of sensing action a can be computed as:

U(br(s),a) = [Rc(br(s)) — Rg(br(s), a)] —¢, (6)

If U(by(s),a) < 0O for all sensing actions, then the
sensing costs exceeds the expected reduction in risk
[Rc(:) — Rs(1)], and a classification action is taken.
Otherwise, the action with maximum utility is taken.

6]

IV. EXPERIMENTAL RESULTS

We validated the method on a synthetic dataset of
metal-oxide sensor responses. Following [12], we
modeled the temperature-conductance response using
a Gaussian function. We also modeled the sensor

dynamics with a first-order linear filter, resulting in:
T®-To

G(T(E) = aG(T(t — 1)) + (1 — &) (lye s
k,T(¢))
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FIGURE 1. Conductance versus temperature for the two

chemical classes.

where T(¢t) is the sensor temperature at time #, and
G(T(t)) is the conductance of the sensor at
temperature T(t), T,is the temperature at which the
sensor conductivity is maximum, k,,k, and o are
parameters that capture the steady-state properties of
the sensor, and « captures history effects.

We evaluated the method on a problem with two
chemicals and a sensor with 30 different temperatures.
Sensor parameters were as follows: ¢« = 0.2, k, = 6.0
and k, = 0.2 for both classes; ¢ =10 and T, = 14
for ®®; =15 and T, =20 for w®. The
temperature-dependent response of the sensor to the
two chemicals is shown in FIGURE 1. These results
were obtained by running the sensor with a random
temperature sequence and recording the corresponding
responses; thus, the spread at each temperature
illustrates the effect of the sensor dynamics.

Training data for each analyte consisted of 40
random temperature sequences, 60 temperature pulses
per sequence. Two IOHMMs (one per class) were
trained; the number of Gaussian components in eq. (1)
was set to M; = 4. FIGURE 2 shows IOHMM
predictions against the sensor response in eq. (7).
These results show that the IOHMM can capture the
temperature dependence and dynamics of the sensor.

The model was tested on 80 samples, 40 from each
class. Each sample was genecrated by randomly
selecting an initial temperature 7'(0) unknown to the
POMDP, and initializing the sensor response to
G (T(0)) = (ke T©@=T0)/2* 4 k. 7(0)). Classification
costs ¢, were assumed uniform (¢, =1 if u #v; 0
otherwise). FIGURE 3 shows classification rate and
average length of the temperature sequence as a
function of feature acquisition costs ¢;. For ¢;
0.025, the system achieves 100% classification rate
with an average sequence length of 2.9 temperatures.
For ¢; = 0.5 the system performs at chance level
(50%), and essentially produces a classification after
measuring the response at a single temperature —this



happens because sensing costs become too high
compared to misclassification costs. Between these
two extremes, the POMDP provides a balance between
sequence length and classification rate: as feature
acquisition costs increase relative to misclassification
costs, the POMDP selects increasingly shorter
sequences at the expense of classification rates.

V. DISCUSSION AND CONCLUSION

We have presented an active sensing approach for
metal-oxide sensors that is capable of selecting
operating temperatures in real-time. The problem is
formulated as one of sequential decision making under
uncertainty, and is solved by means of a POMDP. We
have validated the method on a binary classification
problem using synthetic data from a computational
model of metal-oxide sensors that captures their
temperature-selectivity dependence and history effects.
Our results show that the POMDP is able to balance
sensing costs and classification accuracy: higher
classification rates can be achieved by increasing the
length of the temperature sequence. The method also
appears to be robust to the particular choice of sensing
and classification costs, since classification rates
degrade smoothly as a function of these parameters.
Future work will wvalidate the method using
experimental data. The results presented here assumed
uniform sensing costs, but the method can also be used
to penalize high temperatures, and as a result reduce
power consumption and increase sensor lifetime.
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FIGURE 2. Simulated response of the sensor model in eq.

(7) for two classes, [IOHMM predictions and residuals. The
same random temperature sequence was used in all cases for
comparison purposes.
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