
Encyclopedia of Library and Information Science (ELIS), vol. 68, pp. 346-366, 2001. 

 1

AN UPDATED APPROACH TO COMPLEXITY FROM AN AGENT-CENTERED 
ARTIFICIAL INTELLIGENCE PERSPECTIVE 

 
Oscar N. Garcia 

Dept. of Computer Science and Engineering 
Wright State University 

Dayton, OH 45435 
Ph.: (937) 775-5134 
Fax: (937) 775-5133 

ogarcia@cs.wright.edu 

Ricardo Gutierrez-Osuna 
Dept. of Computer Science and Engineering 

Wright State University 
Dayton, OH 45435 
Ph.: (937) 775-5120 
Fax: (937) 775-5133 

rgutier@cs.wright.edu 
 

ABSTRACT 
 

Here we update and expand our previous work to find commonality in a variety of 
systems, situations, and organisms with regard to a generic concept of complexity (1).  Such 
attempts have drawn significant attention from outstanding researchers of diverse backgrounds 
(2).  Despite years of research with many papers written, there is yet to appear a convergence 
toward a unified methodology in the multi-disciplinary approaches.  In particular, we consider 
how the synthesis of complex systems, as is practiced in the software engineering of large 
systems, sheds light on the analysis of complexity.  We consider how levels of abstraction at 
different granularities relate to complexity from the point of view of the description of a model of 
the system.  We consider also the relationship of an intelligent agent, symbolic or biological, with 
the estimation of complexity.  We use the term agent to include both intelligent programs and 
humans, which learn systems (models) from observations and adapt to their environment by 
learning. It is suggested here that an agent-centered approach, factoring complexity modulo a 
context (called in Artificial Intelligence a perspective), may provide a more general approach to 
determining the complexity of an object or system.  The thesis presented here is that the object 
must not be considered independently from its user agent and its context and that in the duality of 
the consideration, one may learn more about both the general characteristics of complexity and of 
the specific reasons for our interest in it.  The proposal is to consider user, interaction, and the 
related interfaces simultaneously when studying the complexity of a system.  This approach is 
more integrative and less reductionist than studying any of the system aspects individually and 
bridges the difficulties of a large range of diverse settings.  An overview of the field is briefly 
presented in light of the proposed approach. 
 
1. INTRODUCTION 
 
 On the surface, what we call complexity may be simply related to the number of parts, 
elementary actions, or sequences of actions when we apply the commonly held reductionist view 
to objects, systems, or events.  It would seem that anything with a million components should be 
complex. However, more detailed considerations indicate that the functional connectivity of the 
parts, their similarity or dissimilarity and even the point of view from which they are considered by 
a potential user or participant must be considered. 
 The field of artificial intelligence has classically coped with complexity by invoking 
hierarchical abstraction.  Using this method, the same object, action, or event is considered at 
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different levels of detail, with higher levels of abstraction having fewer directly observable 
features.  In engineering design, this idea is applied more functionally to breaking down a complex 
system into simpler subsystems, which are assembled together.  These have been very useful 
approaches, particularly in production, because testing and finding errors in the subsystems is 
much less expensive than doing the same in the completed module or final assembly. 

However, when we consider natural systems that change and evolve in space and time, 
such as ecological systems, planetary systems, or even biological organisms, our complexity 
paradigm needs to be expanded further.  Ideally, we would like a measure that indicates the 
complexity of the system in the abstract, without regard to its environment or the point of view of 
a user or an observer.  We claim, however, that complexity needs to be determined relative to an 
agent  (a system with sensors, actuators, and an internal structure of variable complexity, in many 
cases capable of adaptability and learning) from a given perspective, or potentially averaged over 
a class of agents with the same perspective.  Planetary motion, gravitational pull, and the high 
acceleration of particles were considered very complex before the discoveries of Kepler, Newton, 
and Einstein.  Science attempts to find general explanations that are not observer dependent.  Its 
purpose is to reduce the complexity of these systems in the eyes and minds of those trained in that 
kind of scientific observation.  However, the same specific system shows different complexities at 
different levels of detail and depending on what aspects are sensed, as well as the bias, interest, 
knowledge, and understanding of the observer or user of the system.  As we build more 
sophisticated artificial systems and move toward a science of the artificial in the computer field, it 
is imperative that the issues of complexity be considered agent-centered, based on the model of 
the system the interacting agent has managed to acquire. 

 

 
(a) 

 
(b) 

 
(c) 

 
Figure 1.  Intrinsic Vs. subjective complexity:   

(a) Mandelbrot set, (b) CPU layout and (c) white noise 
 

Consider the images in Figure 1, which show a segment of the Mandelbrot set, a VLSI layout for 
a microprocessor and an image filled with salt-and-pepper noise.  If we were to measure the 
intrinsic complexity of these objects by the length of the shortest program that could generate 
them (the Kolmogorov complexity), we would obtain the counter-intuitive result that the noisy 
image is most complex.  Whereas the Mandelbrot set can be generated from the compact 
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recursion czz NN +=+
2

1  (with initial condition cz =0 ) and the CPU layout can be hierarchically 

described in terms of computer-architectural building blocks, the shortest program that exactly 
describes the noisy image is the image itself.  From our standpoint, the fundamental flaw of such a 
measure of complexity (other than the association of complexity with randomness), is that it 
attempts to quantify the intrinsic complexity of an object, instead of the subjective or 
user-centered complexity. 

In this update article we propose an approach for measuring complexity —and selecting 
an appropriate level of abstraction for a given context and modality— that is based on the 
Minimum Description Length (MDL) Principle and the related Stochastic Complexity of Rissanen 
(3).  The proposed metric quantifies the complexity of a system by the length of the shortest 
model that describes the regularities of the system, as perceived by an agent operating from a 
given perspective.  This measure of complexity is related to what Gell-Mann (12) calls effective 
complexity: the length of a schema (or approximate model) used to describe the regularities of a 
system, relative to an agent that is observing it.  Hence, unlike the incomputable Kolmogorov 
complexity, which focuses on an exact description of an object, the proposed metric is aimed at an 
approximate (read subjective) model of an object. 
 
2. OVERVIEW 
 In this section we will introduce background material that will assist us in deriving a user-
centered approach to measuring complexity.  These are: (1) the concept of perspectives in 
Artificial Intelligence, (2) essential and accidental attributes of complex system, (3) a summary of 
the multiple views and measures of complexity and (4) the software engineering approach to 
measuring complexity.   
 
2.1. PERSPECTIVES AND CONTEXT IN ARTIFICIAL INTELLIGENCE 
 
 We first describe the origins of the concept of perspectives within artificial intelligence 
(AI).  The field of AI has struggled for many years (4) with the central issue of how to represent 
knowledge. In particular, the oft-referenced concept of frames (5) has been the basis of a variety 
of formalisms for representation.  It was the basis for the ambitious Knowledge Representation 
Language (KRL) proposed by Bobrow and Winograd (6) of failed implementation but very 
fruitful in providing a solid theoretical framework.  We borrow the concept of perspective from 
KRL.  The representational frame approaches have recently coalesced in models of natural 
language and cognition.  See, for example, the work of Rasmussen (7), pp. 28-30 on perspectives 
and on functional and structural modeling of adaptive systems.   The KRL approach may have 
been overtaken by the improved inferencing of other logic models in AI, but it had higher 
expressive power.  The KRL representations are based on the comparison of prototypical entities 
(perspectives) rather than through a single definition or set of constraints on the object.  We 
propose here that the perspectives on the complexity of a system/object/event be based on the 
agent’s model and the interaction among the complex object, its context, and the (possibly 
human) agent.  As an example of how a perspective may change the value of the properties of an 
object, think of an everyday automobile that may be considered fast in the context of a means of 
transportation but slow in the context of a race of high-performance vehicles.  Clearly, the 
semantics of the perspective influences the relative complexity of the frame. 
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 The concept of view or subschema, present in many but not all database management 
systems, is an abstract model of the conceptual database or conceptual scheme by means of 
subscheme data definition and data manipulation languages.  The definition of a view is obtained 
by manipulations on part or all of one or more base tables and is, therefore, a derived virtual 
definition or a manipulated projection of base tables.  Views may be involved in searches using 
languages like the Structured Query Language (SQL), which may serve particular groups of users 
(8).  This is a more concrete implementation than the representation by perspectives in KRL.  
Another explicit use of context occurs when help-menus interfaces, sensitive to current settings, 
offer applicable assistance to the user.  
 Methodologies modeling user interactions as finite-state machines or Petri nets of subtasks 
in different contexts have been used to express them in abstract hierarchies, including both 
physical and cognitive actions.  The “operator functional model” of Jones and Mitchell (9) is one 
such example.  Other approaches, such as SOAR, originally oriented to providing an architecture 
for general problem-solving methods (10), have also been used to unify diverse cognitive 
representations. 
 
2.2. ACCIDENTAL AND ESSENTIAL ASPECTS OF COMPLEXITY 
 
 In a frequently quoted article related to software engineering, Brooks (11) referenced the 
fact that the state of the art had not advanced significantly in that field through the discovery of 
essential truths, but mostly through tackling accidental issues that have yielded improvements on 
productivity, reliability, and so forth, without providing fundamental guidelines.  He refers in that 
article to the lack of a “silver bullet” to slay the monsters that stand in the way of efficiently 
producing better software.  In a sense, this is also reflected in the search of Nobelist Murray Gell-
Mann (12) to find the connectivity between laws general to all entities in the universe (the 
quantum mechanics of quarks, for example) and accidentally conditioned laws such as those that 
produce the evolution of entities in complex systems (like jaguars in our ecosystem).  How the 
aggregation of simple parts (the quarks in the jaguar!) subject to universal laws combine in such 
precise layered constructs in space and time to produce the complex adaptive systems of nature is, 
indeed, a basic and, so far, inconclusive scientific quest.  

In dealing with individual variations between specific members of a set of observations, we 
often categorize them by deciding on a given level of granularity and cluster them around a 
centroid in some externally conceived metric space.  This centroid is an idealized averaged 
observation, which we choose as representative of the others included in the cluster.  In this 
manner, we deal with accidental variations of features while preserving the essential personality 
of the group.  This is the manner in which we cope with the variants of a given gene and the 
phones of a given phoneme.  It is interesting that in the biological world, the preexistence of 
alleles in populations of bacteria, which signifies genetic diversity, allows adaptive resistance of 
external attack by antibiotics through the survival of those individuals most fitted for the changed 
environment.  The closest analogy in the software production environment is the reliability 
improvement offered by the creation in isolation of N program versions that follow the same 
program specifications and whose results are compared in a majority-voting discipline as done in 
the pioneering experiments of Brilliant, Knight and Leveson (17).  Also, the stochastic approach 
that we suggest, following Rissanen, to choose a level of model abstraction for optimal use is 
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based on the combination of the “regular” attributes of an object (essential?) plus the deviation or 
“error” of our data for modeling the object (accidental factors?).  
 
2.3. VIEWS AND MEASURES OF COMPLEXITY 
 

For as long ago as when eighteenth-century theologian William Paley used the argument 
that just as a watch was too complex to have occurred naturally—and therefore all living things 
must have been deliberately and purposely designed – the relationship between life and complexity 
has been discussed.  More recently, Dawkins (22), an ardent defender of Darwinism, has 
characterized complexity as having the fundamentally necessary condition that we call extreme 
heterogeneity: something that has many diverse parts.  But Dawkins immediately admits to the 
insufficiency of that condition and restricts his definition to cases where the assemblage of the 
diverse parts of the complex entity is unlikely to have arisen merely by chance.  More is indeed 
needed, because while each batch of a large number of diverse parts thrown together is unique 
and possibly unrepeatable, we do not consider it complex, as we would consider complex a 
constructed operational airliner.  The argument that Dawkins presents then is that the large 
number of diverse parts put together must have some rational quality, specifiable in advance, that 
is highly unlikely to occur by change alone.  In other words, there are interactions between the 
parts assembled that can be understood by what Dawkins calls “hierarchical reductionism”.  This 
is not reductionism down to the smallest components, but rather one that explains behavior in 
terms of the upper or lower corresponding levels in the hierarchy.  This article owes much to this 
concept of complexity: Both theses assert that complexity must take into account the constitution 
and function of the complex entity as perceived by an agent (human or whatever) judging 
complexity in context. 

Another view of complexity is held by Gell-Mann, one of the founders of the Santa Fe 
Institute, which is dedicated to understanding the behavior of complex systems.  Gell-Mann (12) 
considers two types of complex system: those with the ability to evolve and learn, and those 
without it.  The airliner of Dawkin’s example will satisfy the latter but the former is capable of 
adaptive behavior.  The term “Complex Adaptive Systems” (abbreviated CAS) describes this most 
interesting class of complex systems with biological systems as obvious representatives.  
However, lest anyone thinks that non-biological systems do not qualify, survey the abundant 
literature on artificial life (23) and even a recent book by Dyson (24), which tackles the 
complexity of dealing with non-biological evolution using machines as evolving systems in the 
peculiar ecosystem context of human designers and users. 

We are indebted to Lloyd (25) for an accounting of some 31 definitions of complexity.  
Among those 31 definitions of complexity isolated by Lloyd, the Finmeccanica Assistant 
Professor of Mechanical Engineering at MIT, we will elaborate briefly on some mostly selected by 
Horgan, a past senior writer at Scientific American (26).  These complexity measures are based 
on the following: 

 
� Time and Space Complexity: These are perhaps the complexity measures best known 

among computer scientists and constituted an early basis to study the complexity of 
algorithms.  Fundamentally, these measures tell us the rate of growth of an algorithm in 
either execution time or memory requirement, with the size or dimensions of the problem 
tackled.  They constitute a significant part of the theory of algorithms.  The measure is 
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given by the most significant term of the order of growth, called O(n) for a problem of size 
n, as n increases. 

� Algorithmic:  A different view, also from a computer science perspective, is based not on 
the complexity of the object we are dealing with but with the algorithm which, when 
interpreted, describes that object.  Ideally, this measure (also known as algorithmic 
randomness) is invariant with an abstract interpretation process.  This approach was 
advanced independently in the sixties by young Chaitin and also by Kolmogorov and 
Solomonoff.  It has evolved into a field called algorithmic information theory (27).  We 
will refer to this approach in the following section. 

� Entropy:  Thermodynamically inspired measures are based in principle on the energy 
unavailable to be transformed into work due to the motion of molecules.  It is directly 
proportional to the quantity of heat in the body and vanishes at absolute zero.  In an 
isolated system, entropy cannot decrease with change, but increases during irreversible 
changes and remains constant in reversible ones.  Consequently, the universal entropy 
continuously increases.  Entropy also measures the internal level of disorder of the atoms 
of a substance; for example, the atoms of a diamond are more orderly than those of helium 
in a balloon at room temperature; the diamond has lower entropy.  The field of 
information theory utilizes the concept of entropy to describe the regularity of information 
sources, as we see in the next definition.  The formula that represents entropy in 
information theory, which is the average information of all messages in the set of possible 
messages, is of identical form to that representing entropy in statistical mechanics. 

� Information:  As described by Shannon, the probabilistic nature of information sources is 
related to the entropy or irregularity of a system.  An information source that is very 
unpredictable has higher entropy and generates more information than one that is more 
predictable.  The most information may be obtained when all possible outcomes are 
equiprobable.  A measure of information is a measure of unexpectedness.  Clearly, one 
would expect high information sources to be more complex. 

� Fractal Dimension: Systems that may be described by measures of self-similarity or 
fractals have varying degrees of relatively invariant (complexity) detail at smaller and 
smaller scales.  In this case, the “fuzziness” of the system is an indication of its complexity. 

� Effective Complexity: This measure of complexity is related to the regularity, rather than 
to the randomness, of a system.  Complex adaptive systems have the ability of distinguish 
what is random from what is not by discerning patterns and can, therefore, identify 
effective complexity.  Effective complexity relates to the description of the regularities of a 
system by the CAS (12) observing it.  This is very similar to what we are considering here, 
as it involves defining the complexity of a system relative to an external agent observing it. 
Hierarchical Complexity: This complexity measure is related to the diversity that is found 
at the different levels of the hierarchy of a system.  Yoon and Garcia (29) have considered 
experimentally the cognitive complexity of searching the abstraction hierarchies of a 
program in debugging it. 

� Grammatical Complexity: Grammars are syntactic descriptions of occurrences of well-
formed sentences.  The degree of generality of the grammar that describes a system is an 
indicator of its complexity. 

� Thermodynamic Depth: Proposed by Lloyd and Pagels, thermodynamic depth is a 
measure not of the complexity of the object but that of the process that created or 
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calculated it, obtained by measuring the work done or increase in entropy required as the 
states change to its current state. 

� Mutual Information: This information-theoretic measure of complexity is related to the 
information (or similarities) that one part of the system has with regard to the other parts. 

 
 As we can see, there are commonalities among the different measures, but there is not a 
single commonly accepted measure or unit, as also pointed out by Maddox (30), other than those 
based on information or statistical thermodynamics.  Perhaps, some day, the relations among the 
different measures will become clearer and then, hopefully, more explicitly correlated.  In the 
meantime, we offer a view of how a stochastic approach to complexity based on the probabilities 
of a hypothesis and a set of observations sensed by an agent. 
 
2.4. SOFTWARE ENGINEERING MODEL OF HANDLING COMPLEXITY 
 
 The contemporary approach taken by software engineers in handling complexity is an 
interesting and important one, which has not yet been extended in methodology to other fields.  
Although it may not have been considered because it is oriented to engineering synthesis and not 
to scientific analysis, it is an excellent model from which we can learn about complexity because 
so much past and current attention has been devoted to it.  Brooks has revisited these issues in an 
anniversary extension (13) of his original essay on software engineering. 
 A basic tenet of Brooks’ report of more than 20 years on his OS/360 design experience is 
that due to the interrelated nature of a programming effort, adding manpower to a late software 
effort is likely to be counterproductive.  He points out that architectural conceptual design 
integrity is fundamental, as many hands are needed in the implementation of the software within a 
schedule.  Along with our theme here, Brooks defines the architecture of a system as the complete 
and detailed specification of the user interface, specifically the manual of operation. 

We mentioned earlier that the number of parts is a very rough first-order approximation to 
complexity.  In software engineering, the equivalent is the number of lines of code or “locs.”  In 
the first edition of The Mythical Man-Month included in (13), Brooks reported a hyper-linear 
relationship between effort in man-months and the total number of locs.  Classical programming 
estimates of average coding productivity are about 10 locs/day.  However, averages vary widely.  
There have been measured variations between 1 and 5-10 in programmer productivity, of about 
up to a factor of 3 slowdown in coding control code versus translator code, and a noticeable 
speedup when using high-level languages.  Estimates of coding effort are full of uncertainties due 
to programming environment, the programmer, and the problem domain.  However, 
approximating those factors, the relation 
 

( ) 5.1sloctotalConstanteffortgProgrammin ×=  
 
has been established in at least two studies.  Interestingly, this correlates well with the power laws 
suggested by Gell-Mann (12) for information complexity relating to word length (Zipf’s law), and 
so on.  From a complexity point of view, perhaps the gains in modular or object-oriented (O-O) 
programming arise from the shorter sequential length of each module, given in locs, which would 
yield 
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( )∑×=−
objects

objectperslocConstanteffortgprogramminOO 5.1  

 
where the summation is over all objects of the program, although possibly having a slightly larger 
total number of locs, produces a sum of fractional powers of those numbers smaller than 
(total-locs)1.5.  Although this must have been certainly anticipated by proponents of O-O 
programming, it has not been argued in this simple form before to our knowledge.  An extensive 
treatment of complexity in O-O systems from a theoretical and practical point of view may be 
found in (18).  
 Along the same lines, Boehm (19) proposed a “constructive cost model” or CO-COMO 
which estimates the effort PM in person-months as 

 
PM = aSbF 

 
where S is measured in thousands of delivered source instruction lines (not comments), F is an 
adjustment factor depending on process, product, and development attributes, but equal to 1 in 
the basic initial model, and a and b are dependent on the type of software being developed per the 
following table – although the values are different from those referenced by Brooks, the functional 
form is the same. 
 

Complexity of 
software project 

Value of 
parameter a 

Value of 
parameter b 

Simple 2.4 1.05 
Moderate 3.0 1.12 
Embedded 3.6 1.20 

 
 A related observation in the management of complex software projects is that the amount 
of effort required exacerbates the management process difficulties as to make the process 
qualitatively different from managing simpler projects.  The process scales up in a different 
manner and with different requirements.  One such requirement is increased testing and debugging 
of the product, both at the component and at the system level, which typically accounts for more 
than half of the total cost.  Other requirements are the harder-to-satisfy needs for preserving the 
integrity of the architecture, of separating the architecture from its implementation, and of 
evolving the projects starting with a pilot. 

It has been found that between 50% and 90% of all lines of code in industrial and military 
software are related to human-computer interfaces (20).  With the popularization of the World 
Wide Web and the personal computer, their software must necessarily be designed for interaction 
with a large and varied population of users and platforms in an international marketplace whose 
characteristics must be learned, guessed, or estimated and taken into account in the design.  One 
software solution has been the use of a standard interfaces across applications, driven by the 
appeal of the desktop metaphor, the WIMP (windows, icons, menus, pointing) interface, graphical 
user interfaces (GUIs) and other interfaces (HTML) for text.  The use of multi-modal interfaces, 
including speech with software actions, is anticipated.  The amount of interactivity required makes 
the design definitely user centered. 
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Hierarchical and incremental growth approaches in the design of software are combined 
with its reuse in “families” of applications, as suggested by Parnas (21).  Perhaps the most 
significant trend in modern software development is that of information encapsulation in units 
called objects, communicating via messages, which results in object-oriented programming 
(OOP).  This approach, which uses classes and subclasses with instantiations and inheritances, is 
really a more formalized outgrowth of early artificial intelligence knowledge representations using 
frames with procedures.  Designing software in this manner puts the functional dependencies of 
the objects explicitly at the message-passing interfaces.  The OOP approaches and the new related 
methodologies of OOP system analysis and design of software systems are the modern way of 
handling complexity in software engineering. 
 
3. COMPLEXITY FROM AN AGENT-CENTERED, MULTI-MODAL VIEWPOINT 
 

The concept of system is a powerful one.  By referring to a “system” we can determine 
those elements that belong or are part of it and those that are not: It is as if we could define a 
mental envelope across which the system interfaces with its surroundings and with the other 
systems in that habitat.  It is a simplifying assumption that often forgets, unfortunately, to 
reference the agent’s observations that provide the basis for the system’s model.  The use of 
agents is a new conceptual tool in artificial intelligence and distributed systems (14) that shows 
promise and is being increasingly accepted (15).  The use of agents in immersive virtual reality 
that includes human interaction is a more realistic approach to experimentation with complex 
simulated environments.  Some of the opportunities and limitations of this model are current 
topics of promising research (16).  Indeed, the synthetic environments in which humans and their 
avatars interact would seem a fertile ground for research in the complexity of these artificial 
worlds, and, potentially, a frame of reference for the more constrained real world.    
Just as much of the research in complexity is done via computer-based simulation, much of the 
human interaction with complex systems is done by interfacing with computers and networks.  
Again, just as complexity manifests itself at the phase transitions in physical and biological 
systems, it is at the interface between humans, agents, and computers and networks that most of 
the layered interfaces will need to be “intelligent” to facilitate interaction.  Those interfaces are 
becoming accordingly sophisticated, involving modalities that go beyond the keyboard and point-
and-click and drag-and-drop widgets into multiple modalities adapting themselves to the audio, 
speech, video, haptic, and user-and-gesture-recognition required by the users of the newer digital 
libraries and repositories.  The fusion of these modalities will present new challenges (31).  New 
metaphors are needed that include user interactions in the considerations of the system complexity 
with full recognition of human capabilities and weakness and the corresponding alignment of the 
complementary technology.  The complexity of the user-system entity is now increased by the 
variability of capabilities (or degree of physical impairments) and variances (speech, response, 
time, etc.) among users.  Reinforcement in the fusion of intelligent interfaces in multiple 
modalities is one positive way of complementing the robustness of the system via redundant 
inputs. 

Learning capabilities of adaptable intelligent agents, including humans, can be 
approximated by their ability to build models of their experiences based on observations.  In a 
sense, we humans are learning machines and that is part of adaptability.  How viable and efficient 
is this model when put to use, is one of the important aspects in selecting the complexity 
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appropriate to the use.  We can abstract a model as a hypothesis that is supported by 
observations.  The centroid of a set of observations is a simple such hypothesis.  Given a set of 
possible models we will consider how to choose an optimal one for the amount of data or 
observations available.  We will also consider aspects of how to build the model set. 
 
3.1. CONTEXT AND FUSION OF SENSED MODALITIES IN COMPLEX SYSTEMS 
 

With the background presented, we are ready to incorporate the user-interface-system 
interaction in multiple input/output modalities by approaching complexity from the different 
perspectives, as suggested by the representation of knowledge in KRL-like systems of frames.  
However, a serious research effort is necessary to optimize the method of fusion of the various 
modal features for best recognition and communication between the human and the machine.  In 
addition, consideration of the context of the communication can be represented by additional 
perspectives.  A block diagram for such an interactive system is given in Figure 2.  Each of the 
components—modal and context—of the perspective is represented in a KRL-line frame as 
suggested above.  A control mechanism is necessary to both select and correlate the optimal 
modal perspectives that are appropriate to the context of the task undertaken by the system and 
its interface.  These types of modal perspectives are shown and briefly described in the alternative 
fusion methodologies considered next.  For example, one approach would provide the 
representation of perspective (say, speech) with the perspective of lip-reading (also called speech-
reading).  State-of-the-art speech recognizers exist with error rates below 10% in conditioned 
environments.  Their robustness in noisy environments could be enhanced with sensing the 
synchronized lip movements which occur in the articulation of the utterances, as has been 
described (29) for alternative fusion models.  
 

Control of appropriate 
modal and context 

perspectives
Speech

Resource 
management task

Restaurant

Modal
Perspectives

Context
Perspectives

Lips

Other

Control of appropriate 
modal and context 

perspectives
Speech

Resource 
management task

Restaurant

Modal
Perspectives

Context
Perspectives

Lips

Other
 

 
Figure 2. Modal and context components of perspectives and selective control of their frame 

structure 
 
 In deciding at what level(s) fusion should take place in a hierarchy of decisions, one should 
certainly consider the functional relations between the observations being fused.  It seems that the 
more loosely related they are, the later they can be fused in the hierarchy to make a final 
determination.  There are examples from the fusion of lip-reading and speech that contribute of 
robust speech recognition.  Figure 3a illustrates the case where the decisions with regard to the 
recognized utterance are made with probabilistic measures before the two are combined.  In 
Figure 3b, a higher-dimensional vector is formed and the decision is made based on the composite 
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data with regard to the recognized utterance.  There is yet an intermediate model in which several 
decisions are made sequentially at different levels of an abstraction hierarchy. 
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Figure 3.  (a) “Separate identification” or “late integration” method,  
(b) “Direct identification” or “early integration” model 

 
4. COMPLEXITY AND ABSTRACTION 
 

The use of recognizers or classifiers offers a lesson about complexity.  We will use the 
example of speech recognition to illustrate the point, but it holds for many other recognizers and 
classifiers systems.  When a Hidden Markov Model is trained to recognize sentences out of a 
bigram grammar, for example, we have a case of analysis in which the parameters of the system 
and its probabilities are averaged over a large number of different speakers to make the operation 
as independent of the speaker as possible. 
It is interesting to note that if one were to use this recognizer in its inverse function, that is, a 
generator of speech, the results would be terrible even if functioned rather well as a recognizer.  
Why? The answer is rather obvious.  When training as a recognizer, we average the parameter 
values over as wide a range of samples from different speakers as possible.  But those speakers 
possess correlated parameters that are independently averaged as if they functional dependencies 
did not exist.  Male and female speakers are averaged even though their pitch is quite different.  
When the recognizer is used as a generator of speech, the outcome is that of neither a male nor a 
female, but the unnatural average between the two.  To have a better recognizer that could be 
used as a generator, we would need to isolate the functionally related parameters and train with 
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samples that included specifically those cases that can be identified rapidly in the case of real-time 
speaker-group classification at a low level of granularity.  Then, we could do a better job of using 
the recognizer as a generator for those types for which enough samples existed for previous 
training.  This would require a much larger training population than that usually available. 
 A plausible argument along the same lines comes from a modern result due to Valiant (32) 
that has significantly advanced learning theory.  It is called the theory of the “probably 
approximately correct” or PAC learning.  A basic formula in that theory relates the number of 
hypotheses [cardinality of set H or (card H)] to be learned to the probability of making a correct 
learned decision (independently of the method used to learn!) and the number of samples needed 
as a minimum for learning within that probability of error δ not exceeding the value ε.  This lower 
bound on m is given by 
 

( )





> Hcard

m ln
1

 

 
where “ln” stands for the natural logarithms and “card” stands for the cardinality of the set H.  
For example, if we want to distinguished between some 50 different hypotheses for phonemes and 
we want to learn under PAC assumptions with probability δ=0.9 of error ε<0.1, then we need 
some 40 samples (phones) per phoneme from which to learn.  As we increase the number of 
hypotheses (male, female, any one of the dialects for the language, grouping of speakers 
according to age, etc.), the lower bound on the number of samples needed per hypothesis 
increases additively by the logarithm of the cardinality of the new groups. 
 Clearly, there is some compromise where we must use a certain granularity of detail in the 
number of features (which determine the number of hypotheses) for each level of learning and 
generation.  If the same recognizer is to be used as a generator, it will be necessary to know the 
functional relations among the parameters involved in the particular generation of a given voice, 
as they cannot all be independently chosen by arbitrary means.  Matters are further complicated 
when different modalities are considered, because their parameters are also functionally related 
and the observations must be synchronized for recognition, as in the case of lip-reading. 
 Something similar happens when we try to represent a probabilistic phenomenon with a 
Markov transition network.  The order of the Markov network is the number of previous states 
on which the next state depends.  In general, we use first-order Markov networks for simplicity, 
but there are two ways in which we can solve actual previous state dependencies beyond the most 
recent state.  One is to use compression by which we code the previous subsequences of states 
into a new theoretical state (as we do when we use vector quantization) or we go to a lower level 
of granularity and transform the higher-order Markov network into a more complex first-order 
network.  In the case of vector quantization, we decrease complexity with a loss of information 
(we generalize to higher levels of abstraction).  By reducing the order of the Markov net with a 
new larger alphabet for labeling the transitions, we increase the complexity of the Markov 
network (number of states) without loss of information, which is equivalent to a lossless 
transformation.  Most frequently, we assume that only the most recent phenomena affect the next 
state as a simplifying approximating assumption to manage the increase in complexity.  This is 
exactly what we do when we select the frame duration in the analysis of speech and assume that 
the duration is long enough to keep the state steady for the time of the frame.  This is however 
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usually insufficient to model coarticulatory effects in speech production and multiples of phones 
(triphones) are used to characterize coarticulation. 

These examples illustrate the constraints that we deal with when we try to represent 
complex systems.  The questions are related to the kinds of losses that we must endure when we 
go from one level of granularity or coarseness in the representation of our model to another, and 
which are the levels of detail that might invalidate the results for a given agent’s goals.  In the case 
of speech recognition, the transformations go from phones to context-dependent phones 
(triphones), to words, and to sentences, and at each level, there is a transition where losses occur.  
In a complex system in which it is possible to distinguish hierarchical levels to achieve the user’s 
goal, we can conceive lesser and lesser levels of detail as we reach an apex as we generalize.  At 
each level, we must consider the agent perspective so that we include only features relevant to its 
needs.  Figure 4 attempts to represent this idea.  Clearly, within this “cone” of hierarchies, there 
are other more specialized sub-cones with their own sublevels in topical areas.  Something similar 
has occurred in the professions and in the publishing world with greater specialization to cope 
with the growth in knowledge and with more focused reader interest. 
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Figure 4.  Pi denotes different user perspectives. (TOE is the “Theory of Everything.”) 

 
 In Figure 4, we consider multiple levels of representation (given that a representation or 
model is all we can talk about) and the interconnections between the levels which we depict as the 
“staircases” that show a reductionist explanation when we move from a “theory of everything” or 
TOE to the upper levels.  The point is that we do not require —or want—a complete knowledge 
from the bottom up —even if we could have it— to operate at a given level.  Rather, we need to 
know explicitly what perspective we take when operating at a particular level.  There are enough 
uncertainties and margins of error at any level that we cannot afford to work satisfactorily if we 
carry the baggage of all the uncertainties or complexities that come in from the other levels.  Once 
we understand how to move around a given level, we can afford to move up, by generalizing, or 
down, by specializing and explaining on the basis of more fundamental principles, and advance the 
scientific state of the art.  This relative independence of the behavior of objects at a coarser level 
of granularity from the influence of less significant factors has been called “decoherence” by 
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complexologists such as in Chap. 11 of  (12).  Empiricists construct models which have these 
decoherencies built in. 

The point is that we need not have all the facts at a given level to be able to have useful 
theories.  One could conceive at a very high level that in Figure 4 we had the phenomena 
associated with particle physics (quantum electrodynamics and chromodynamics, superstring 
theory, relativity effects, etc.) at the lowest level, physics and chemistry in the classical Newtonian 
sense at the following level, and biology, genetics, anthropology, computer and cognitive 
sciences, and so forth at the next level, and then social sciences and humanities, and so forth at the 
uppermost level, possibly a habitat for the culturally evolving “memes” of Dawkins (cultural 
concepts equivalent to the genes of biology).  It should be clear that we use our cognitive 
primitives at all levels to explain to each other all the theories and hypotheses in terms of basic 
knowledge originating from our shared experiences and our schooling (witness the technical 
explanations using common words like flavor and color in talking about quarks to illustrate 
differences).  It is in the use of those basic cognates that our modalities and contextual settings 
play roles, not necessarily equal at all levels.  Within a given level, modality, and context, we also 
have analogous sublevels of abstraction. 
 Reducing our view to a single topic, as in Figure 5, and looking at a given perspective 
under a given modality or modalities, we can observe different levels of difficulty in manipulating 
or using our representation.  There should be a certain level of abstraction at which operating with 
that representation (say, making inferences) is easiest.  This is an indication that we have different 
levels of complexity for different levels of abstraction if we correlate the difficulty of manipulation 
with complexity.   
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Figure 5.  Different levels of difficulty on levels of abstraction in a given topic 

 
One can think of the example of the “modified checkerboard problem in which the 

perspective and level of representation facilitate reaching certain conclusion.  Consider a 
checkerboard with 64 squares of size 1 × 1 colored in the usual fashion.  It is clear that this 
checkerboard could be covered totally with 32 tiles of dimension 1 × 2.  Then let us remove the 
two end tiles of a diagonal of the checkerboard as shown in Figure 6.  The question asked is: Can 
we now cover the checkerboard with 31 tiles of size 1 × 2?  We can easily see that it is impossible 
if we consider that each of the 31 tiles of size 1 × 2 has to cover, of necessity, one black and one 
white square of checkerboard.  Our representation made an otherwise more difficult inference 
relatively simple. 
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1x21x2

 
Figure 6.  The modified checkerboard problem 

 
4.1. AN APPROACH TO SELECTING AN ABSTRACTION LEVEL 
 

Given a user’s perspective we have hypothesized here that, there is a level of abstraction of 
the object’s description that best facilitates the agent’s interaction with the complex object or 
system in the sense of that perspective.  Here we will advance this hypothesis by utilizing a 
measure of complexity and its application to an illustration of the problem.  A user or intelligent 
agent interacts with a given world through observations and forms “learned” models or 
hypotheses at various levels of detail.  Those models are organized and may be interfaced at 
different levels of abstraction (see cone on the right of Figure 7 below, analogous to the one on 
the left of Figure 5) one of which is chosen by the user or agent.  We show a measure that yields 
an optimal choice for a set of such models. 
 

 
Figure 7.  A user-centered perspective of the hierarchical abstract model with different MDL 

complexities. 
 
4.1.1. MINIMUM DESCRIPTION LENGTH (MDL) 
 

Corresponding to each of the hierarchical levels of abstraction in Figure 7 (as in Figure 5) 
there is a corresponding (bar) level of complexity for instantiations of the model at different 
granularities. We expect an instantiation where interactions with the model by the user or agent 
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are easier.  An intuitive approach to measuring complexity is the Minimum Description Length 
(MDL) principle (33). Imagine a communications game where a sender is to transmit a sequence 
of observations to a receiver.  MDL states that the (stochastic) complexity of the problem can be 
measured by the number of bits used to encode a theory, plus the number of bits used to encode 
the observations with the aid of the theory.  Thus, the optimal hypothesis h (out of a set H) for a 
given observation sequence D is: 
 

 
{ 











+=
∈ 43421

errorregularity
Hh

MDL hDLhLh )|()(minarg  

 
where L(h) is the length of the hypothesis and L(D|h) is the length of the data given the theory.   
L(h) captures regularity (the inverse of complexity) in the observations, whereas L(D|h) measures 
those aspects of the observations not predicted by the hypothesis.  When the number of 
observations is small, the term L(h) dominates, biasing the selection criterion toward more 
regular, less complex hypotheses. As the number of observations increases, the term L(D|h) 
becomes increasingly important, allowing more complex theories to be selected.  The MDL 
principle is, thus, a data-driven instantiation of Occam’s Razor: choose the simplest theory that 
explains a phenomenon for a given amount of data.  MDL controls over-fitting by limiting the size 
(number of parameters) of the acceptable hypotheses based on the amount of data available for 
the reliable estimation of their parameters.  In this regard, MDL is related to PAC learning, which 
provides lower bounds for the minimum amount of data needed for a given learning problem. 

To illustrate the MDL principle let us assume the problem shown in Figure 8, where the 
goal is to transmit the observation sequence {y1, y2, …, yN}, shown as raw data, across a channel 
with a fixed quantization error.  The naïve alternative would be to transmit the binary codes of the 
raw data after it has been digitized with the required quantization level.  Three other alternatives 
are shown in this figure. Theory A (least complex theory) encodes the series with a linear model y 
= a1t + a0, Theory B performs a cubic fit y= a3t

3 + a2t
2 + a1t + a0, and Theory C (most complex 

theory) uses an N-th order polynomial ∑ =
= N

k

k
k tay

0
 and, therefore, fits the data without error.  

The relative cost of transmitting each theory is, in a first-order approximation, given by the 
number of parameters of the model (the order of the polynomials) times the number of bits used 
to encode each coefficient.  The cost of transmitting the time series is proportional to the error 
bars (difference between the data and the model) divided by the required level of quantization, 
which remains fixed across models.  There obviously exists a trade-off between the naïve 
approach of transmitting N raw data points and the overkill of transmitting N coefficients (Theory 
C).  Depending on the number of data points, Theory A or Theory B will become the optimal 
method for transmitting the time series. 
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Figure 8.  Different theories for transmitting a set of data across a fixed quantization error channel 
 

Interestingly, the MDL principle has strong connections with the Bayesian formalism for 
model selection (34). The Bayes-optimal hypothesis hMAP is the one that maximizes the posterior 
P(h|D): the probability that a given hypothesis h is true after D has been observed. This Maximum 
A Posteriori (MAP) principle can be stated as: 
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Applying Bayes’s theorem and then taking logarithms: 
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From Information Theory we know that the optimal coding of a grammarless string of 

messages { }...,,, 321 mmm  is achieved by assigning codes length )(log)( 2 ii mPmL −= , where 

P(m) is the probability mass function governing the generation of messages.  In other words, 
events that are more likely to occur are encoded with fewer bits so that the overall message string 
length is minimized as entropy is maximized.  If such an encoding is used to transmit hypothesis 
and data, MAP and MDL are equivalent since maximizing the log posterior equates to minimizing 
description length. 
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4.1.2. MDL AND THE SELECTION OF AN ABSTRACTION LEVEL  
 

The same MDL model selection principle can be adopted to determine an appropriate level 
of abstraction to explain a given phenomenon, relative to the perspective of a user or intelligent 
agent.  In this case, hypotheses or theories "explaining" the model become different levels of 
abstractions.  The user/agent makes observations and tries to interpret/understand them by asking 
questions to an oracle.  The oracle’s task is then to find an appropriate level of abstraction that 
yields a simple mental model for the agent, yet accurate enough to explain the phenomena.  A 
very abstract model will not be able to accurately explain the observations, resulting in a large 
number of special cases to handle the intricacies of the observations. On the other hand, a low 
level (of abstraction) model will accurately explain the observations, but will be too complex to be 
of any use to the agent. 
 
5. CONCLUSIONS 
 
The proposed representation scheme, coupled with its context for the agent or agents (whether 
dependent on its use or not), which includes aspects of the training of the system if it is a learning 
system, must result in a more pragmatic (albeit circumstantial) complexity-evaluation process.  
This is because a certain degree of specialization is obtained by including the control structure 
selecting the favored modalities and perspectives for a given user and context.  This approach 
does not consider the complexity of an object, action, or event in its own right, and this may be 
criticized because it is not a measure of complexity specific to the object.  Given the lack of a 
consensus with regard to what represents inherent complexity, one might argue that such a 
measure is an elusive as that of absolute beauty or similar subjective concepts.  However, the 
proposed approach is more pragmatic because it generalizes the determination of complexity via 
selective specialization, as required by its modal and contextual use.  The perspective, in a sense, 
determines both (1) and the nature of the question (the sensing modality or modalities of the 
perspective chosen by the control in Figure 2 to the left) and (2) the context (to the right below 
the control in Figure 2) to be used in obtaining the answer, whereas the knowledge at each section 
or level of the cone of abstractions in Figure 4 may provide an answer at a given level of detail. 

We have suggested an approach based on perspectives in the representation of the system 
interfaces that involve not only the modalities that optimize the interactions for a specific task but 
also the fusion of such interactions in different ways, or even possibly at different sequential layers 
of an abstraction hierarchy.  How multiple modalities are best fused is an open question that must 
be addressed.  Also, needing attention are the context and task integration within the interface.  
This would make the approach to the complexity of a system integrate its user and the context 
selection as well as its automatic choice and fusion of the modalities of the interface.  

We have also shown an approach that allows an optimized choice of abstraction level 
given a set of model hierarchies and a perspective for using a complex system.   A central point is 
that the modalities employed by the agent using the complex system being evaluated are, of 
necessity, part of the system’s evaluation in a specified context, and that both modal and 
contextual aspects (perspectives), are factors in facilitating the use at a given level of detail in 
the hierarchy of complexities. 
 One additional aspect is worth mentioning in dealing with complexity at a specific level 
from the human-centered perspective.  Motivation and interest are undeniable drivers of a 
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successful investigation.  Investigating an abstract phenomenon (across levels) may be of interest 
to a seasoned scholar, but for a new researcher, it is more interesting to deal with specific 
instances and later generalize, or, at best, generalize along the way of investigation.  Human 
dedication is observably sharpened with concentrated by a focusing perspective. 
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