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Foreign Accent Conversion Through Concatenative
Synthesis in the Articulatory Domain
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Abstract—We propose a concatenative synthesis approach to
the problem of foreign accent conversion. The approach consists
of replacing the most accented portions of nonnative speech with
alternative segments from a corpus of the speaker’s own speech
based on their similarity to those from a reference native speaker.
We propose and compare two approaches for selecting units, one
based on acoustic similarity [e.g., mel frequency cepstral coeffi-
cients (MFCCs)] and a second one based on articulatory similarity,
as measured through electromagnetic articulography (EMA). Our
hypothesis is that articulatory features provide a better metric for
linguistic similarity across speakers than acoustic features. To test
this hypothesis, we recorded an articulatory-acoustic corpus from
a native and a nonnative speaker, and evaluated the two speech
representations (acoustic versus articulatory) through a series of
perceptual experiments. Formal listening tests indicate that the
approach can achieve a 20% reduction in perceived accent, but
also reveal a strong coupling between accent and speaker identity.
To address this issue, we disguised original and resynthesized
utterances by altering their average pitch and normalizing vocal
tract length. An additional listening experiment supports the
hypothesis that articulatory features are less speaker dependent
than acoustic features.

Index Terms—Accent conversion, speaker recognition, speech
perception, speech synthesis.

I. INTRODUCTION

D ESPITE years or decades of immersion in a new culture,
older learners of a second language (L2) typically speak

with a so-called “foreign accent.” Among the many aspects of
proficiency in a second language, native-like pronunciation can
be the most difficult to master because of the neuro-musculatory
basis of speech production [1]. A foreign accent does not neces-
sarily affect a person’s ability to be understood, but it may sub-
ject them to discriminatory attitudes and negative stereotypes
[2]. Thus, by achieving near-native pronunciation, L2 learners
stand to gain more than just better intelligibility.
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A number of computer-assisted pronunciation training
(CAPT) techniques have been investigated for this purpose
[3]. Although not as effective as human instruction, CAPT
allows users to follow personalized lessons, at their own pace,
and practice as often as they like. Despite these advantages
CAPT remains controversial, partly because many commercial
products tend to choose technological novelty over pedagogical
value [4]. As an example, a product may display the learner’s
utterance (e.g., a speech waveform or a spectrogram) against
that from a native speaker. These visualizations are not only dif-
ficult to interpret for nonspecialists but they are also misleading:
two utterances can have different acoustic representations de-
spite having been pronounced correctly. The most praised
systems are those that incorporate automatic speech recogni-
tion (ASR) because they can provide users with objective and
consistent feedback. However, using ASR technology to detect
pronunciation errors and evaluate pronunciation quality [5] is
challenging because of the inherent variability of nonnative
speech. As a result, ASR errors may frustrate and mislead the
learner, and ultimately undermine their trust in the CAPT tool.
For these reasons, some authors have suggested that CAPT
systems should rely on implicit rather than explicit feedback
[6]. As an example, recasts—a rephrasing of the incorrectly
pronounced utterance—have been shown to be superior to
explicit correction of phonological errors [7].

Supporting the use of implicit feedback, a handful of studies
during the last two decades have suggested that it would be ben-
eficial for L2 students to be able to listen to their own voices
producing native-accented utterances. The rationale is that, by
removing information related to the teacher’s voice quality, it
becomes easier for the learner to perceive differences between
their accented utterances and accent-free counterparts. As an
example, Nagano and Ozawa [8] and Bissiri et al. [9] showed
that allowing learners to hear their own utterances resynthesized
with a native prosody led to further improvements in pronun-
ciation than listening to prerecorded utterances from a native
speaker. Results by Probst et al. [10] also indicate that choosing
a well-matched voice to imitate leads to improvements in pro-
nunciation, which suggests there is a user-dependent “golden
speaker.” Thus, one can argue that the golden speaker is the
learner’s voice with a native accent. Accent conversion (AC)
attempts to create such a speaker by modifying nonnative cues
while maintaining those that carry the learner’s identity.

In previous work [11], we presented an AC method based
on the source/filter model of speech. The method combined the
spectral envelope of a native speaker (assumed to be the pri-
mary carrier of linguistic information) with the excitation and
vocal tract length of a nonnative speaker (assumed to be the
primary carrier of identity). The result was perceived as being
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60% less accented than the nonnative speaker, but subjects per-
ceived the voice to belong to a third speaker (i.e., neither the
native nor the nonnative speaker). There are two likely expla-
nations for the emergence of a new identity: 1) the spectral en-
velope contained information about the native speaker’s iden-
tity and 2) subjects used accent as a discriminator of identity.
To address this issue, we propose a new AC method based on
concatenative speech synthesis. In this new approach, which
we refer to as conFAC, accent conversion is achieved by re-se-
quencing existing speech units (i.e., diphones) from the nonna-
tive speaker so as to best match the prosodic and segmental char-
acteristics of a native speaker. We hypothesize that the approach
will create utterances that have a native accent while preserving
the identity of the nonnative speaker.1 In the process, we eval-
uate two metrics of segmental similarity: one based on articula-
tion (e.g., tongue, lips, and jaw motion) and a second one based
on acoustics (i.e., MFCCs). Our hypothesis is that the articu-
latory domain provides a better separation of linguistic infor-
mation and speaker-dependent characteristics, which otherwise
interact in complex ways in the acoustic domain. This hypoth-
esis is consistent with previous work by Broad and Hermansky
[12], which suggests that the vocal tract’s front cavity is the
main carrier of linguistic content whereas the back cavity car-
ries speaker-dependent information.2

The manuscript is organized as follows. Section II reviews
previous work in AC. Section III describes our articulatory
corpus, which captures mid-saggittal vocal tract movements for
a native speaker and nonnative speaker of American English.
Section IV describes the proposed AC method as a unit-se-
lection problem that transforms nonnative speech using a
reference utterance by a native speaker. Section V presents
four experiments to evaluate the degree of accent in conFAC
utterances using either articulatory- or acoustic-based metrics
during unit selection. The discussion suggests potential points
of improvement and directions for future research.

II. LITERATURE REVIEW

Accent conversion has grown out of several research areas,
from signal processing methods for voice conversion [8], [13]
to perceptual studies on cues of speaker identity and nonna-
tive accent [14], [15]. Inspiration for our work comes from a
study by Campbell [16], who used unit selection to synthe-
size English words from a Japanese corpus. His approach con-
sisted of selecting Japanese units to match low-level targets (i.e.,
cepstral values) generated from an English text-to-speech syn-
thesizer (TTS). Mean opinion scores (MOS) showed that se-
lecting Japanese units based on their similarity to English cep-
stral features improved quality compared to a
baseline system that used text-based context-dependent features

. More interestingly, the study also showed that
utterances created with the proposed method sounded more na-
tive than those of the baseline system.

1The approach is also advantageous in pronunciation training because it
provides realistically attainable targets for L2 learners (i.e., the resynthesized
speech consists of units previously produced by the learner).

2Note, however, that some vowel systems use the feature �-ATR(advanced
tongue root) in a contrastive fashion. �-ATR allegedly correlates with second
formant bandwidths.

In a related study, Huckvale and Yanagisawa [17] sought
to synthesize native Japanese utterances from an English TTS
system by means of an “accent morphing” scheme. The au-
thors created two versions of the desired Japanese utterance:
an English-accented Japanese utterance (E) created by syn-
thesizing Japanese words with an English TTS, and a native
Japanese-accented utterance created separately with a Japanese
TTS (J). Then, the prosodic and segmental features of E were
altered to follow J more closely. Namely, the authors morphed
the spectral envelope of E by interpolating line-spectral-pairs
with J, and also altered E’s prosody (pitch and rhythm) using
pitch-synchronous overlap add (PSOLA). The individual and
combined effects of each morph were evaluated through an
intelligibility test. Their results showed that the segmental and
prosodic morphs can individually yield a slight improvement in
intelligibility; when combined, however, both morphs provide
a much stronger improvement than that predicted from the
individual effects. Unlike Campbell [16], which was limited to
the sounds of the source speaker, accent morphing provides a
way to create new sounds not available in the source corpus.
However, since the approach is based on spectral interpolation,
it is more likely to be successful if both speakers have similar
voice qualities.

Yan et al. [18] developed an AC method based on modifying
the parameters of a formant synthesizer. In their approach, a
model of vowel formant trajectories for British, Australian, and
American accents is built using a two-dimensional HMM. AC is
then performed by resynthesizing an utterance using the formant
values predicted by the appropriate formant trajectory model.
Prosodic features (e.g., vowel duration and pitch) are modified
with PSOLA. An ABX test confirmed that accent-converted ut-
terances were closer to the target accent than to the source accent
in about 75% of the cases. A different approach was explored by
Yanguas et al. [19], who convolved the glottal flow derivative of
one speaker with the vocal tract transfer function from another
speaker. The approach was tested on two pairs of speakers: one
pair had northern- and southern- accents of American English,
while the second pair had Cuban and Peruvian Spanish accents.
In both cases, interchanging the glottal flow derivative affected
the perceived accent.

Our AC approach is most similar to [16] because it uses fea-
tures from a native speaker to perform unit selection on a non-
native database. However, our work is unique among all pre-
vious AC methods because it relies on articulatory features. In
the process, we also perform acoustic-based AC within the same
synthesis framework to compare the advantages of each domain.
The next section describes a custom articulatory database col-
lected explicitly for this work.

III. ARTICULATORY-ACOUSTIC DATABASE

A. Articulatory Data

A few articulatory databases are publicly available (e.g.,
MOCHA [20] and Wisconsin X-ray microbeam [21]), but these
corpuses are relatively small in size and, most importantly, do
not contain nonnative speech. For this reason, we decided to
collect a custom articulatory database from a nonnative speaker
and a native speaker of English. The dataset was collected at
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CSTR (University of Edinburgh) by means of electromagnetic
articulography (EMA; Carstens AG500, cf. [22], [23] for a
more detailed description of the method). The nonnative subject
(FS) was raised in Madrid (Spain); he began studying English
at age 6 but primarily spoke Spanish until he moved to the
United States at the age of 25. At the time of the recording
he was 41 years old and had been living in the United States
for 16 years. The native speaker (NS) was a monolingual
speaker who grew up in New York; he was 39 years old at the
time of the recording. Both subjects recorded the same 344
sentences chosen from the Glasgow Herald corpus. In addition,
FS recorded 305 sentences not spoken by NS. Audio recordings
were captured at a sampling rate of 32 kHz with an AKG CK98
shotgun microphone.

Articulatory movements were simultaneously tracked by at-
taching sensors to various locations in the subject’s vocal tract.
Four pellets placed behind the ears, the upper nasion and the
upper jaw were used to cancel head motion and provide a frame
of reference, while the other six were attached to capture artic-
ulatory movements (upper lip, lower lip, jaw, tongue tip, tongue
mid, and tongue back). The front-most tongue sensor (TT) was
positioned 1 cm behind the actual tongue tip, the rearmost sensor
(TD) as far back as possible without creating discomfort for the
participant, and the third sensor was placed equidistant from TT
and TD [22]. Position estimation was done with the help of the
TAPAD toolbox [23] as well as Kalman filtering software devel-
oped at CSTR. The data were low-pass filtered before and after
position estimation with FIR filters.3

Raw EMA pellet positions are not suitable synthesis features
since they are rather speaker-dependent, and our approach re-
quires that articulatory features from one speaker be used to
select speech units from another speaker. Following [24], we
convert EMA pellet positions into relative measurements of the
vocal tract [Fig. 1(a)]; these measurements correspond to 6 of
7 parameters of Maeda’s geometric model [25] (the 7th pa-
rameter, larynx height, cannot be calculated from EMA data).
The EMA-derived “Maeda” parameters were mean and vari-
ance normalized (zero mean, unit variance) to further reduce
differences caused by speaker anatomy. A sample of the pa-
rameters for the word “deployment” is illustrated in Fig. 1(b).
The parameters are described as follows: (1) Jaw opening dis-
tance: Euclidean distance from the lower incisor to the upper
incisor (origin); (2) Tongue back position: horizontal displace-
ment between the tongue back and the upper incisor; (3) Tongue
shape: angle created between the three points on the tongue; (4)
Tongue tip height: vertical displacement between the tongue
tip and the upper incisor; (5) Lip opening distance: Euclidean
distance between the upper and lower lips; (6) Lip protrusion:
Euclidean distance between a) the midpoint between the upper
and lower incisors and b) the midpoint between the upper and
lower lips.

3Each low-pass filter was applied to the raw amplitude signal and then again
to the position estimations. The low-pass filter specifications are as follows. The
reference sensors (right and left ear, bridge of nose and maxilla) had a passband
of 5 Hz and a stopband of 15 Hz, and a damping of 60 dB. The tongue tip had
a passband of 40 Hz, a stopband of 50 Hz, and a damping of 60 dB. All other
sensors had a passband of 20 Hz, a stopband of 30 Hz, and a damping of 60 dB.

Fig. 1. (a) Calculating Maeda parameters from EMA recordings. Pellets (blue
circles) are placed in the upper lip, lower lip, jaw, tongue tip, tongue mid, and
tongue back. An additional pellet (red crosshair) is located on the upper incisor
and serves as the reference frame. (b) Example Maeda parameters for the word
“deployment” spoken by NS. Phonetic labels are assigned using Arpabet nota-
tion. Maeda labels (M1-6) correspond to the numbers in (a). The data has been
artificially scaled and offset for visualization purposes.

B. Acoustic Data

For comparison purposes, we extracted acoustic features in
the form of 13 mel frequency cepstral coefficients (MFCCs),
computed from the STRAIGHT spectrum [26] by warping the
spectrum according to the Mel-frequency scale and applying
a discrete cosine transform. The suprasegmental features pitch
and loudness (0th-cepstral coefficient) were also calculated.
Features were mean and variance normalized to reduce differ-
ences between long-term voice properties of FS and NS (e.g.,
spectral slope) and make them more robust to noise [27].

C. Phonetic Transcription and Analysis

Arpabet phonetic transcriptions of the utterances were ob-
tained in a two stage process. First, an automatic alignment was
obtained using HTK’s forced alignment tool and speaker-inde-
pendent acoustic models trained on the Wall Street Journal and
TIMIT corpuses. Details of the acoustic model can be found in
[28]; the specific configuration chosen was a monophone model
with 4000 tied states and 32 Gaussians per state. The transcrip-
tions were subsequently adjusted4 by a native speaker using the
audio editing tool WaveSurfer to amend phoneme labels and

4The accuracy of the HTK transcriptions was noticeably worse for the foreign
speaker than the native speaker.
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boundaries. Based on these annotations, we had 2581 accented
items (when aggregated across the whole corpus). Among these,
substitutions were the most common class. We observed 1573
(61%) substitutions. In contrast, deletions accounted for only
26% of all accented items. Insertions were even less frequent
(13%, ). Certain types of phones (and phone sequences)
are more common than others, and certain phones are also more
prone to be deleted, inserted or substituted. Therefore, indi-
vidual substitutions, deletions, and insertions were transformed
into Wilson scores in order to make their magnitudes compa-
rable. A Wilson score represents the lower bound of the con-
fidence interval (95%) of the probability of mispronunciation,
e.g., a Wilson Score of 0.10 means that there is a 95% chance
that the probability of mispronunciation is greater than 10%.

The first major observation was that substitutions were the
strongest source of mispronunciations (max. WS 0.2503), fol-
lowed by deletions (max.WS 0.179) and insertions (max. WS
0.073). In the following we will generally only deal with sub-
stitutions, deletions, and insertions if their WS exceeds 0.10.
Scores lower than this threshold will only be mentioned if they
form a class with other processes exceeding the threshold. Fol-
lowing this rationale, there were no noteworthy insertions. Only
the deletion of voiced and voiceless alveolar stop as well as
the labiodental fricatives [v] exceeded a Wilson score of 0.1
(0.18, 0.12 and 0.14, respectively). Among substitutions, the
most common were associated with the fact that the Spanish
sound system [29] phonemically does not have voiced fricatives.
As a consequence the most common substitutions were those of
English voiced sibilants [z] and [ ] with their Spanish voice-
less counterparts [s] and [ ] (WS of 0.2503 and 0.23) as well
as substitutions involving associated affricates ([d ] to [t ], WS
0.097). Also the voiceless labiodental fricative [f] frequently re-
placed its voiced counterpart [v] (WS 0.079). A second major
class of substitutions targets the vowel system: The Spanish
vowel inventory does not have the lax vowels [ ] and [ ], which
in turn are often substituted with their tense counterparts ([i] and
[u]). However, lax vowel substitution is more common for the
back [WS 0.14] than for front vowels for which the probability
is lower than 10% [WS 0.087]. A third common class of sub-
stitutions targets the nasals: Spanish has bilabial, alveolar, and
palatal nasal phonemes (/m/,/n/ and / /). However these assimi-
late to the place of articulation of the following consonant. This
is likely to be the source of the frequent substitutions of the velar
nasal [ ] by the alveolar nasal [n]. Another interesting finding is
the relative rare occurrence of substitutions of voiceless plosives
by their voiced counterpart that could have been expected by the
fact that the distinction between voiced and voiceless plosives
is a true voicing distinction in Spanish, but cued by the presence
of aspiration in English. However, the substitution of [t] by its
voiced cognate [d] as the most frequent in this class of substi-
tutions is only moderately frequent (WS 0.05). Taken together,
the frequencies render well the difficulties expected from the
phonological differences between Spanish and English. A sum-
mary of these values is found in Table I.

IV. METHODS

Our AC approach is built on top of a general framework for
unit-selection synthesis. Given native and nonnative versions of

TABLE I
SUMMARY OF THE MOST RELEVANT MISPRONUNCIATIONS BY THE FOREIGN

SPEAKER; THE ABSENCE OF FS REALIZATION DENOTES DELETIONS. THE

LAST COLUMN INDICATES THE COVERAGE OF THE TARGET PHONES IN

THE FS DATABASE; HIGHER VALUES INDICATE A BETTER SELECTION OF

CANDIDATES USED BY THE PROPOSED METHOD OF ACCENT CONVERSION

(DESCRIBED IN THE NEXT SECTION)

an utterance and their phonetic transcriptions, our method op-
erates in three steps: 1) detect mispronunciations as differences
between the nonnative and native phonetic transcriptions; 2) ex-
tract articulatory features from a native utterance; and 3) search
a database of nonnative speech to find units similar to those of
the native utterance. These steps are illustrated in Fig. 2.

In concatenative speech synthesis, novel utterances are cre-
ated by combining short units of speech (e.g., phones, diphones,
triphones) from a corpus. Units are selected based on their sim-
ilarity to some target unit, described by a vector of synthesis
features, as specified by the front-end component of the synthe-
sizer. The goal of unit selection is to find a sequence of units
that match the synthesis features and join smoothly. The cost of
selecting a particular candidate unit is proportional to the dif-
ference between the candidate unit and the target unit, whereas
the cost of joining two units is proportional to the amount of
acoustic distortion at their boundary. Given synthesis features
for a target unit and candidate unit , the cost of selecting
is defined as

where is the distance between and along the
synthesis feature, and is the weight of the feature.

Weight values are found using a regression-based training algo-
rithm [30]. Likewise, the concatenation cost between consecu-
tive units and is defined as

which estimates the amount of distortion introduced by the join,
i.e., discontinuities in the MFCCs, pitch, and loudness at the
boundary between two units. The total cost for a particular se-
quence of units is the sum of the target and concatenation costs
for the entire sequence.

(1)
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Fig. 2. Overview of articulatory-driven accent conversion. ConFAC selects di-
phones from a nonnative speaker that match the articulatory patterns of a native
speaker. The process to perform acoustic-driven accent conversion is similar ex-
cept the Maeda parameters are replaced with MFCCs.

A user-defined parameter provides a tradeoff between
smooth joins and accurate target matches. The Viterbi algorithm
can then be used to find the sequence of units from the database
that yield the minimum total cost in (1).

A. Accent Conversion as Concatenative Synthesis

We employ this unit-selection strategy to replace the most ac-
cented units in a nonnative utterance with units that are closer
to those produced by the native speaker. This is accomplished
in three steps: mispronunciation detection, feature extraction,
and synthesis. The first step detects pronunciation differences
between the FS and NS5 by comparing their phonetic transcrip-
tions for a given sentence. This comparison is facilitated by cre-
ating a third transcription composed of the NS phone sequence
aligned (as closely as possible) to the FS utterance; we refer to
this as the “mispronunciation transcription” (see Fig. 3 for an ex-
ample). Broad differences in pronunciation (i.e., phonetic inser-
tions, substitutions, and deletions) can be determined by com-
paring the mispronunciation transcript and true FS transcript

5Due to the fact that there may be several acceptable native pronunciations
for a given word, our approach may sometimes mark an acceptable FS pronun-
ciation as mispronounced (i.e., false positive) if it does not coincide with the
particular pronunciation used by NS. In this case, the effect would be that the
synthesized speech sounds more like the NS production, which is an acceptable
result.

Fig. 3. Phonetic differences between native and nonnative speech are detected
from the mispronunciation transcription. This transcription is created by fitting
the native speaker’s phonetic transcript to the timing of the nonnative speaker.
In this example, the nonnative speaker pronounced the word “anything” with
two phonetic substitutions and one insertion.

since they share the same time-base. Phone-level mispronunci-
ations are subsequently registered at the diphone level. Thus a
single phone-level mispronunciation affects two diphones: one
spanning from the center of the mispronounced phone to the
center of the previous phone and one from the mispronounced
phone to the following phone. This approach is advantageous
because diphone synthesis yields a smoother result than phone
synthesis; i.e., diphones are joined at acoustically stable loca-
tions (i.e., center of a phone) whereas phones are joined at their
transitions. Our implementation also includes a parameter to
allow the user to define how far a mispronunciation spreads to
neighboring diphones; the default value is two diphones to ei-
ther side of the mispronounced phone.

For each nonnative diphone that is marked as mispro-
nounced, we extract features from the corresponding native
diphone to serve as target synthesis features in (1). Ideally,
these features reflect the linguistic content of the diphone
rather than cues to the speaker’s identity. Our hypothesis is
that articulatory features are better suited for this purpose
than acoustic features. We test this hypothesis by gathering
two sets of synthesis features: one that describes the native
speaker’s diphones using Maeda parameters and another that
uses MFCCs.6 Each diphone is represented by the following
synthesis features: phonetic label (e.g., /a-t/), duration (e.g.,
100 ms), and Maeda/MFCC trajectory; the latter is obtained by
sampling each Maeda/MFCC feature at three relative locations
to facilitate comparison of diphones with different lengths (i.e.,
beginning, middle, and end of the diphone). Our approach also
replaces correctly-pronounced phones if their suprasegmental
features are not consistent with those of the native utterance.
In this case, the primary features (i.e., Maeda or MFCC) are
sampled from the nonnative speaker, and features associated
with suprasegmental properties (e.g., pitch, loudness) are
taken from the native speaker. Finally, we create an acoustic
waveform from the synthesis features following three steps:
1) diphones are selected from the nonnative corpus based on
their similarity to synthesis features from the native speaker;
2) selected diphones are refined to minimize spectral disconti-
nuities at their boundaries; and 3) the STRAIGHT parameters

6The features pitch, loudness, and phoneme duration were included in both
conditions. Although they are technically acoustic measurements, they also rep-
resent articulatory features: glottal activity (frequency and power) and rate of
speech.
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for each diphone are concatenated and an acoustic waveform is
generated with the STRAIGHT vocoder.

B. Unit Selection With a Small Speech Corpus

Previous work on unit-selection synthesis shows that a
minimum of 36 000 phones is required to generate intelligible
speech, though some systems use as many as 175 000 [31]. By
comparison, our nonnative corpus (the longest continuously
collected articulatory dataset to our knowledge) contains 20 000
phones spanning 60 minutes of active speech.7 We use two
techniques to compensate for the reduced size of our articu-
latory speech corpus. First, we allow the original nonnative
diphones to be considered as candidates for synthesis. This
occurs when the unit-selection parameter is set to ; since
neighboring units (by definition) have zero concatenation cost,
the Viterbi algorithm will select the original diphone sequence
at a total cost of zero. As increases, target costs are weighted
more heavily, which results in units being selected from the
database to replace the original units. Selecting different units
increases the chance of reducing the nonnative accent, but also
increases the chance of introducing distortions. By adjusting
accordingly, we can effectively control the number of diphones
replaced in a given utterance.

The second technique provides better control over this factor
by allowing us to define the percentage of new units to replace
in a given utterance. This is achieved by replacing the static
variable in (1) with a function that dynamically controls
the percentage of new units to be selected:

where is a user-defined variable that determines the per-
centage of new units to be replaced in an utterance, and the
function calculates the percentage of new units selected
for a given . This formulation allows us to balance the desired
amount of accent change and overall level of naturalness. We
tested values for the parameter from 0.1 to 1.0 in increments
of 0.1. A value of 0.5 was empirically determined to be the
highest tested value that did not significantly alter the overall
level of naturalness of synthesized utterances. This corresponds
to replacing 50% of the diphones in the nonnative utterance.

C. Unit Refinements

Due to the sparsity of our corpus, direct concatenation of
diphones can lead to harsh distortions resulting from discon-
tinuities in the acoustic spectrum. We improve the quality of
a join between consecutive diphones with two acoustic refine-
ment methods: optimal coupling and spectral smoothing. Op-
timal coupling [32] improves the join between two diphones by

7These figures may suggest that we lack sufficient data to perform unit selec-
tion synthesis. However, it is important to note that our system has a restricted
vocabulary (1385 unique words in the NS corpus) and that the system has access
to a reference utterance by NS in addition to the text transcript.

Fig. 4. (a) Left diphone (d1) and right diphone (d2) are joined to form a tri-
phone (t). The join location is specified by points � and �. The duration of the
concatenated triphone is ���. (b) The cost of joining two diphones is computed
as the sum-squared residual for each cepstral component. A good join (left) has
a smooth transition between diphones, while a poor join (right) has a large spec-
tral discontinuity.

adjusting their boundaries to minimize spectral differences [see
Fig. 4(a)]. The cost of joining at a particular boundary is calcu-
lated as follows: let be a row vector the containing values
of the left diphone’s MFCC prior to the cut-point, and let

be a row vector for the values following the cut-point
for the right diphone ( in our implementation). As illus-
trated in Fig. 4(b), to determine the cost of joining at a particular
boundary, we model the combined vector by a line of
best fit defined by coefficients and compute the sum-squared
residuals

The optimal cut point is specified by the pair with the
minimum cost. To avoid deviating from the desired target dura-
tion , our solution also incorporates a duration penalty

where is the final duration of the shared phone that
results from joining two diphones [see Fig. 4(a)], and is a
weighting parameter. The final cost is given by

In our experience, a value of provides a good balance
between join smoothness and accurate durations, so this value
was used throughout our work.



FELPS et al.: FOREIGN ACCENT CONVERSION THROUGH CONCATENATIVE SYNTHESIS IN THE ARTICULATORY DOMAIN 2307

Fig. 5. Spectral morphing with the PDM method [34]. Spectra were offset ver-
tically for visualization purposes.

Compared to direct concatenation, boundary refinement
through optimal coupling improves synthesis quality [33]. In
our experience, additional smoothing is sometimes required
to handle large spectral discontinuities. To address this issue,
we employ a morphing technique to interpolate the acoustic
spectrum near diphone boundaries [34]. A common technique
is to interpolate line spectral frequencies (LSF), but LSFs are
derived from an all-pole model and do not model spectral zeros
well (e.g., typical of nasal sounds). Instead, we chose an inter-
polation method that models poles and zeros in the spectrum.
The proposed approach is based on pulse density modulation
(PDM), a coding technique that employs a delta-sigma mod-
ulator to convert a spectral envelope , where denotes
a frequency bin , into a pulse sequence

as follows:

with initial conditions and
; the term represents the feedback gain of the delta-sigma

modulator: . In turn, the pulse sequence
can be decoded back into a log spectral envelope

through the discrete cosine transform (DCT)
as

which essentially acts as a low-pass filter by truncating the DCT
expansion with an appropriate cutoff ( in our imple-
mentation). Thus, given a pair of spectral envelopes and

, a morphed spectral envelope can be computed by aver-
aging the position of corresponding pulses in the two spectra

where the morphing coefficient can be used
to generate a continuum of morphs between the two spectral
envelopes and (Fig. 5).

D. Straight Synthesis

Once individual diphones have been selected and refined,
we generate an acoustic waveform using the STRAIGHT anal-
ysis/synthesis framework [26]. We selected the STRAIGHT
analysis/synthesis framework because it yields high-quality
results while providing straightforward manipulation of fun-
damental frequency and spectral characteristics (necessary
for Experiment #2 in Section V). STRAIGHT models speech
using three parameters: spectrogram, aperiodicity, and funda-
mental frequency. As described in the previous section, the
STRAIGHT spectrogram for each diphone is altered to create
a smooth join. In turn, the STRAIGHT aperiodicity signal for
each diphone is retrieved directly from the database without
modification. Prosodic modifications are also performed at this
stage to match the pitch contour of the native speaker. First,
the contour is taken from the native speaker and shifted
to match the average of the nonnative speaker (i.e., NS
fundamental frequency is on average 40 Hz lower than FS).
Second, we correct for differences between phone durations
of the two speakers by calculating a piecewise linear function8

that maps phone durations of the native speaker to those of the
new utterance. This allows us to resample the native speaker’s
fundamental frequency at the speaking rate of the nonnative
speaker. In a final step, the modified spectrogram, aperiodicity,
and fundamental frequency for each diphone are concatenated
and synthesized using STRAIGHT’s synthesis engine.

V. EXPERIMENTS

We evaluated the AC system through four perceptual studies.
The first three experiments were aimed at evaluating our ability
to modify the accent of a nonnative speaker, whereas the fourth
experiment investigated whether articulatory features (Maeda)
provide a more speaker-independent encoding than acoustic pa-
rameters (MFCCs). Participants in these perceptual studies were
recruited through Mechanical Turk, Amazon’s online crowd-
sourcing tool. In order to qualify for the studies, participants
were required to pass a screening test that consisted of identi-
fying various American English accents: Northeast (i.e., Boston,
New York), Southern (i.e., Georgia, Texas, Louisiana), and Gen-
eral American (i.e., Indiana, Iowa). Participants who did not
pass this qualification task were not allowed to participate in the
studies. In addition, participants were asked to list their native
language/dialect and any other fluent languages that they spoke.
If a subject was not a monolingual speaker of American English
then their responses were excluded from the results. Participants
were paid $1 for completing the test.

A. Experiment #1: Accent Rating

Following [35], participants were asked to rate the
degree of foreign accent of utterances using a 7-point
Empirically Grounded, Well-Anchored (EGWA) scale
( not at all accented; slightly accented;
quite a bit accented; extremely accented). Four types of

8The knots of the piecewise function are calculated from the phonetic tran-
scripts. For example, if the phoneme /a/ is spoken by the native speaker from
400 ms to 500 ms and the corresponding nonnative /a/ spans 350 to 425 ms, then
one piece of the mapping function is defined by the line between (400,350) and
(500,425).
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TABLE II
BROAD IPA TRANSCRIPTIONS OF THE TEN SENTENCES USED IN EXPERIMENTS

1–3. THE FIRST TRANSCRIPTION BELOW EACH SENTENCE IS FROM NS AND

THE SECOND TRANSCRIPTION IS FROM FS

stimuli were compared: original utterances from FS and NS,
AC in MFCC space AC , and AC in Maeda space
AC . Twenty participants rated 40 utterances (4 condi-

tions 10 sentences shown in Table II). Several criteria were
considered during test sentence selection: 1) Does the FS utter-
ance sound at least “quite a bit accented?” 2) How many differ-
ences are there between the phonetic transcript of FS and NS?
3) Are the differences typical to those of Spanish L2 speakers of
English? and 4) How many potential replacement diphones exist
in the corpus? The selected sentences were then reconstructed
from diphones taken from the remaining 639 FS utterances (de-
scribed previously in Section III).

Results from the first experiment indicate a large difference
in perceived accent between FS and NS, but AC and
AC were rated similar to FS (Fig. 6). A repeated mea-
sures ANOVA test was performed with the null hypothesis that
the average accent rating for FS, AC , and AC are
the same. The results do not give sufficient evidence to reject
the null hypothesis, i.e., there is no significant difference in
perceived accent , . We suspected that
the high similarity among FS, AC , and AC may
have influenced listener ratings; i.e., the three conditions are
based on units from the same speaker. Namely, we hypothe-
sized that subjects assigned similar accent ratings to the three
conditions (FS, AC , and AC ) either because of a
need to provide consistent responses for the “same” voices or
because differences among them were small compared to those
with the fourth condition (NS). Testing this hypothesis was the
subject of the next two experiments.

Fig. 6. Accent ratings for conFAC. Error bars indicate intervals of confidence
�� � ����� in a multiple comparison test.

B. Exp. #2: Decoupling Accent and Identity (Part 1)

In this experiment we sought to determine whether accent rat-
ings in Experiment #1 had been affected by the perceived iden-
tity of the speaker. For this purpose, we disguised the original
FS and NS recordings by altering their fundamental frequency
and long-term spectral properties. Three baseline guises were
created:

1) : modeled after NS, this guise resembles a deep
male voice .

2) : modeled after FS, this guise resembles an average
male voice .

3) : modeled as the reciprocal of G with respect to
G , this guise resembles a child-like male voice

.
To create a guise, we shift and scale the fundamental fre-

quency of the source voice to match the range of the target
guise, and perform vocal tract length normalization through fre-
quency warping [36]. To calculate a frequency warping function

, we apply dynamic frequency warping on 20 time-aligned
STRAIGHT spectrograms from the two speakers. Therefore, to
make NS (who has a deep voice) sound more like FS (who has
an average voice) we warp NS’s STRAIGHT spectrogram with
the function . Conversely, applying the inverse function

to FS makes his voice sound deeper. The process is il-
lustrated in Fig. 7(a).

Six types of stimuli were created for this test by combining
two source voices (FS and NS) with three guises (Table III).
Twenty participants rated ten utterances from each condition on
a 7-point EGWA scale. Results from the listening experiments
are summarized in Fig. 7(b). A two-factor repeated measures
ANOVA test was performed for the factors “source voice” and
“guise.” The results show a significant difference in source voice
(i.e., FS or NS) , , but no sig-
nificant difference for guise , . In
other words, these results indicate that exposure to the original
voices (NS has a deeper voice than FS) does not bias partici-
pants towards assigning lower accent (i.e., more native) ratings
to deeper voices. This is a positive result because it allows us to
disguise the AC conditions in Experiment #1 without affecting
their true accent ratings.
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Fig. 7. (a) Defining the frequency warping function for each of the three guises.
Guises G and G are modeled after FS and NS, respectively. The baseline
warping function ��� ����� is the result of performing dynamic frequency warping
from NS to FS. (b) Accent ratings for the change of identity experiment. Error
bars indicate intervals of confidence �� � ����� in a multiple comparison test.
Asterisks indicate original voices.

TABLE III
SIX CONDITIONS USED IN EXPERIMENT #2

TABLE IV
SEPARATION OF EXPERIMENT #3 STIMULI INTO TWO TEST SETS (A AND B)

C. Exp. #3: Decoupling Accent and Identity (Part 2)

In this third experiment, we sought to determine whether lis-
teners in Experiment #1 rated AC , AC and FS sim-
ilarly because they perceived them as the same speaker. To an-
swer this question, we disguised AC and AC (from
Experiment #1) with the guises developed in Experiment #2.
Two separate tests were performed to balance the choice of dis-
guise across experimental conditions. In the first test (denoted
by Set A in Table IV), AC and AC underwent G
and G transforms, respectively. Listeners rated these utter-
ances in addition to unmodified FS and NS utterances. These
guises were reversed for set B.

Twenty participants rated the utterances in Set A and a dif-
ferent group of twenty participants rated utterances in Set B.

Fig. 8. Accent ratings for the experimental conditions after undergoing a
change of identity. Error bars indicate intervals of confidence �� � ����� in a
multiple comparison test.

Results from the study are summarized in Fig. 8. We combined
tests A and B in a repeated measures ANOVA analysis to test
the null hypothesis that the mean accent rating of FS, AC ,
and AC are the same. The evidence suggests that we can
reject the null hypothesis; there is a significant difference be-
tween the means , . The results of a
multiple comparison test also show that all pairs are significantly
different except for AC and AC . In this case, the per-
ceived accent of AC and AC are 16% and 20% lower
than that of FS. Both acoustic and articulatory-based conFAC re-
duce the accent of FS, though the result is still perceived as more
accented than native. This result also suggests that listeners in
Experiment #1 were biased by the similarity of AC and
AC to FS, and that the guises allowed listeners to assign
independent ratings to the two forms of synthesis.

D. Exp. #4: Comparing Strengths of Synthesis Features

The objective of the fourth experiment was to assess the rel-
ative amount of linguistic information and speaker-dependent
information in the two domains: acoustic and articulatory. To
measure linguistic content in the two domains, we performed
leave-one-out synthesis by extracting synthesis features from
an FS utterance and selecting replacement units among the re-
maining FS utterances. We will refer to this as the same-speaker
(SS) condition since the synthesis features and synthesis data-
base are both taken from FS (Table V). Twenty participants
were then asked to indicate the synthesized utterance (SS
versus SS ) that sounded more “natural and intelligible.”
To measure the degree of speaker-dependence of the two
domains, we also generated stimuli by extracting synthesis
features from a NS utterance and selecting replacement units
among the remaining9 FS utterances. Since the synthesis fea-
tures and synthesis database originated from different speakers,
we will refer to these stimuli as different speaker (DS). The
same twenty participants were then asked to choose among
pairs of utterances (DS versus DS ). Each partici-
pant responded to 25 paired comparisons in the SS condition

9The FS utterance that was removed in the SS condition was also removed in
the DS condition.
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TABLE V
EXPERIMENTAL CONDITIONS IN EXPERIMENT #4

and 25 paired comparisons in the DS condition; presentation
order of the 50 pairs was randomized within the study, and
participants were not presented with SS and DS stimuli within
the same paired comparison.

To compare the relative amount of linguistic information in
the two domains, we analyzed results for the SS stimuli using
a two-tailed binomial significance test with the null hypothesis
that there was an equal preference for the choice of
target features (i.e., MFCC and Maeda). The 500 responses (20
participants 25 SS questions) showed a preference for MFCC
synthesis features (321) over Maeda (179), which corresponds
to a preferred Maeda proportion of 0.358

. The preference for SS may be explained by the
fact that Maeda parameters provide an incomplete representa-
tion of the vocal tract, as well as by experimental issues with
EMA sensor drift over time and nonlinearities in the articula-
tory space, where slightly different articulatory configurations
can produce large changes in acoustics [37]. In short, MFCCs
are more reliable indicators of the linguistic content of a diphone
than Maeda parameters.

To analyze results for the DS condition, we combined lis-
teners’ responses in a 2 2 contingency table (see Table VI);
this allowed us to isolate the effects of linguistic content and
speaker-dependence of the two domains. To fill the contingency
table, we considered each listener’s preference for a particular
sentence in the SS and DS conditions. For example, if a lis-
tener preferred SS (over SS ) for “sentence 1” and
DS (over DS ) for the same sentence, then that re-
sponse was recorded by increasing the count on the upper-right
bin. We analyzed responses using McNemar’s matched pair test,
with the null hypothesis that row and column marginal frequen-
cies are equal for each outcome. In this case, due to the high
preference for MFCCs in the same-speaker condition, we should
expect a similar preference in the different-speaker condition.
Our results show strong evidence to reject the null hypothesis;
the Maeda preference proportion increased from 0.358 in the
same-speaker condition to 0.52 in the different-speaker condi-
tion . This result
supports our hypothesis that speech is less speaker-dependent in
the articulatory domain than in the acoustic domain, the conclu-
sion being drawn from the relative improvement (i.e., 0.358 to
0.52) rather than the final Maeda preference (0.52). Additional
studies, however, are required to confirm that this result gener-
alizes to other pairs of speakers.

VI. DISCUSSION

In previous work [11] we proposed an AC method that con-
sisted of combining the spectral features of a native speaker with
the excitation signal from nonnative speaker; the synthesized

TABLE VI
CONTINGENCY TABLE SHOWING THE PAIRED RESPONSES

IN THE FOURTH EXPERIMENT

speech was perceived as being 60% more native-sounding, but
failed to maintain the identity of the nonnative speaker. Fur-
thermore, it was unsuitable for altering mispronunciations in-
volving missing or extraneous phonemes. To address this issue
we have applied concatenative synthesis to the problem of ac-
cent conversion. By reconstructing speech from the nonnative
speaker’s own utterances, we are able to address mispronun-
ciations involving missing and extraneous phones while pre-
serving the voice quality of the nonnative speaker. Our results
reveal a modest improvement (20% more native); the lesser im-
provement can be partially explained by the fact that conFAC
is limited by the inventory of speech segments in the nonnative
speaker’s corpus.10 Therefore, conFAC’s ability to alter accent
depends upon the nonnative speaker’s particular mispronunci-
ations as well the diversity of the corpus.11 We are considering
two options to expand the FS diphone inventory. One option is to
increase the corpus by means of articulatory inversion. Namely,
an inversion model could be built from the existing articula-
tory-acoustic corpus, and then used to predict articulators for a
much larger acoustic-only corpus of the nonnative speaker; this
work is currently underway in our group. The second option is
to augment the nonnative speaker’s phone inventory, either with
units from a native speaker (after pitch and vocal tract length
normalization to match the nonnative speaker) or from a for-
mant synthesizer; previous work [39] has shown that synthetic
units can be introduced in natural speech with little degradation
in speech quality. We are also exploring nonconcatenative AC
techniques for accent conversion including statistical voice con-
version [40].

A natural extension of conFAC would be to combine the
advantages of the acoustic domain, which provides better
linguistic information, with those of the articulatory domain,
which provides a higher degree of speaker independence. In

10Another possible explanation for the modest improvements of our approach
is that it detects mispronunciation differences at the level of broad transcriptions.
As noted by one of the anonymous reviewers of the manuscript, this approach
may miss foreign accents that manifest themselves at a finer phonetic detail (e.g.,
lack of aspiration in a voiceless plosive by FS may be perceived as a voiced plo-
sive by a native listener). To detect finer-grained mispronunciations, it may be
possible to time-align utterances from the two speakers at the analysis-window
level. Several techniques have been proposed recently for the specific problem of
measuring VOT [38]. Ironically, our previous accent conversion approach [11]
based on vocoding may be better suited to correct this type of mispronuncia-
tions; audio morphing with the proposed PDM method may be another option.

11The FS and NS corpuses contain 20 000 and 13 000 phones, respectively,
which is considered small for concatenative synthesis. For comparison, Clark et
al. [31] indicate that in order to achieve reasonable performance (MOS of 3 out
of 5) a database should contain a minimum of 36 000 phones. Even with these
limitations, our FS database is the most extensive single-session collection of
EMA data, to the best of our knowledge. For comparison, the MOCHA-TIMIT
[20] and X-Ray Microbeam [21] datasets contain 30% and 50% fewer sentences
per speaker.
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a preliminary experiment (not reported here), we also per-
formed accent conversion using a hybrid feature set containing
articulatory and acoustic information. An inspection of the
resulting unit-selection weights revealed that nearly all high
weight values were assigned to MFCC features. Furthermore,
utterances synthesized with the hybrid weights were not percep-
tually different from those obtained for AC . We believe
this result can be traced back to our current weight-training
procedure. Since weights are trained using units and features
from a single speaker (FS), they are therefore optimized
for same-speaker synthesis. Results from the same-speaker
stimuli in Experiment #4 show a clear preference for MFCC
SS , which explains the high weight values for MFCC

in the hybrid set. Therefore, we do not expect the hybrid feature
set to provide significantly different results from AC . A
potential direction for future research is to develop a weight
training algorithm that assigns feature weights based on the
feature’s ability to represent linguistically similar speech con-
sistently across speakers. As an example, a simple solution
may be to assign weights inversely proportional to a feature’s
variance across speakers.

The finding in Experiment #4 is important because it ad-
dresses a common issue found in investigations of articulatory
similarity across speakers. These studies typically compare the
variance of articulatory features (e.g., tongue position) with
acoustic features (e.g., formant values) for multiple phones
across several speakers [41]. Information from these studies is
used as evidence to determine whether humans aim for auditory
or articulatory targets when speaking (i.e., the domain with the
least variance across speakers being assumed to be the target
domain). The problem with this methodology is that the rela-
tionship between these two domains is highly nonlinear [37],
which makes it difficult to perform a meaningful comparison
across domains. The approach used in Experiment #4 to create
the different-speaker stimuli resolves this issue by estimating
the acoustic result of articulatory differences across speakers
(FS and NS in this case). As an example, NS may position his
tongue in a forward position compared to FS for a particular
segment. To determine whether this difference is meaningful,
one would then synthesize a comparable utterance from FS
using segments where the tongue was placed in a more forward
position, and then determine if this manipulation leads to signif-
icant differences in acoustics. In other words, the approach has
the potential to help distinguish between phonetic variations
that are linguistic or the result of organismic variation such as
palate geometry or overall vocal tract morphology.

VII. CONCLUSION

We have proposed a concatenative approach to foreign accent
conversion that combines diphones from a nonnative corpus
based on their similarity to acoustic/articulatory features from
a native speaker. Using this approach, we showed that the per-
ceived degree of foreign accent in a Spanish speaker of Amer-
ican English was reduced by 20%. Our results indicate that the
tested acoustic and articulatory representations are equally suit-
able for the purposes of accent conversion through concatena-
tive synthesis. These results also indicate that articulatory-based

features are more speaker-independent than acoustic features,
but that they do not capture as much of the linguistic content
of a diphone; this is most likely because EMA can only track a
small number of points within the vocal tract (upper and lower
lips, jaw, and 3 points along the tongue), whereas acoustic fea-
tures characterize the full vocal tract.

The proposed framework allows accent conversion to be per-
formed using other types of features. We are currently exploring
the use of two additional types of features: articulatory fea-
tures predicted from acoustics (i.e., through articulatory inver-
sion) [42], which would allow us to significantly expand the
unit-selection corpus, and full tongue contours reconstructed
from EMA [43], which may provide a better articulatory repre-
sentation than Maeda parameters. We expect these forthcoming
studies to provide further understanding of the types of features
that are most suitable for accent conversion.
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