World Scientific

International Journal on Artificial Intelligence Tools “
www.worldscientific.com

Vol. 12, No. 1 (2003) 17-35
© World Scientific Publishing Company

EVOLUTIONARY OPTIMIZATION OF GAUSSIAN WINDOWING
FUNCTIONS FOR DATA PREPROCESSING

DALE E. COURTE

University of Dayton, Computer Science
300 College Park, Dayton OH 45469

MATEEN M. RIZKI

Wright State University, Computer Science and Engineering
Dayton, OH 45435

LOUIS A. TAMBURINO
AFRL/SNAT, Wright-Patterson, AFB, 45/33-7321

RICARDO GUTIERREZ-OSUNA

Texas ABM University, Computer Science
College Station, TX 77843

Received 16 April 2002
Accepted 6 June 2002

The average classification accuracy of an odor classification system is improved using a genetic
algorithm to determine optimal parameters for feature extraction. Gaussian windowing functions,
called "kernels" are evolved to extract information from the transient response of an array of gas
sensors, resulting in a reduced set of extracted features for a linear discriminant pattern classification
system. Results show significant improvements are achieved when compared to results obtained
using a predetermined and fixed set of four bell-shaped kernels for every sensor. Examination of the
evolved kernels reveals the areas of the sensor responses where discriminating information was
identified. A novel data migration approach during training helps prevent overtraining, and the
fitness measure chosen incorporates adjustments for both population diversity and solution .
complexity. A variety of adjustable parameters, including the definition of a time-varying dynamic
weighting factor, encourage experimentation in order to appropriately tune the sampling methods
and fitness measure.

Keywords: Evolution; genetic algorithms; electronic nose; classification; pattern recognition; feature
extraction.
1. Introduction

When an array of gas chemical sensors is presented with an odor, the result is a set of
time-based responses. Most responses consist of a rapidly changing transitional phase
followed by a steady state, as shown in Figure 1, where the response is sampled at 1 Hz

17

18 D. E. Courte et al.

for one minute. When such data is used as input to a pattern analysis engine, a system
known as an electronic nose results [1]. A challenge in most pattern classification
problems is preprocessing the sensor responses to reduce the amount of data to be
considered by the classifier. Gutierrez-Osuna and Nagle [2] describe one such system and
discuss findings on several preprocessing techniques.

voltage

1 4 7 1013161922 2528 31 34 37 40 43 46 49 52 55 58
time(s)

Fig. 1. Response of Four Sensors to a “sniff”. Each sensor is sampled once per second for one
minute.

The work discussed here obtains performance improvements by focusing on just one
of the three aspects of data preprocessing discussed in [2], that being compression via
windowed time slicing. Gutierrez-Osuna and Nagle use four identical bell-shaped curves,
or "kernels", as windowing functions for each sensor. Each of these kernels is multiplied
by the sensor response and integrated with respect to time, resulting in four features
extracted for each sensor response. The result is a reduced set of four features per sensor
response that captures information in the transient of the response as well as the eventual
steady state. Classification is then accomplished by applying a standard linear
discriminant analysis/K nearest neighbor (LDA/KNN) approach [3]. LDA is one of many
popular statistical methods of dimensionality reduction [4], and nearest neighbor
classifiers have long been recognized as an effective approach to nonlinear classification
problems [5]. Note that all sensors are treated identically using this method, so individual
characteristics evidenced by a given sensor’s response to a particular classification
problem are not considered. It is reasonable to consider that the information content of
different sensors may be centered at different points in the signal.

Rather than consider each sensor identically, using a fixed set of bell-shaped curves as
time slicing functions (Figure 2), a different set of kernels is evolved for each sensor,
where each kernel is a Gaussian exponential function with a given mean and standard
deviation. Similar Gaussian functions have been used in morphological recognition
systems [7]. A different set of kernels is evolved for each sensor and the number of
kernels per sensor is not fixed, but allowed to vary from zero to a user-defined maximum.
The amount of available training data helps guide the choice of this limit, as it needs to be
large enough for meaningful features to be discovered while small enough as to not result

Evolutionary Optimization of Gaussian Windowing Functions 19

in over-training. In this case, the danger of over-training is the detection of false
separations resulting from too many features. The goal is therefore two-fold:

* Increase the classification accuracy of the electronic nose through the
extraction of a more effective feature set.

* Reduce the overall number of extracted features used for the LDA/KNN
classifier.

1.2

time(s)

Fig. 2. Bell-shaped Kernels Used in [2] for Windowed Time Slicing.

Evolutionary techniques have been applied to numerical optimization problems for
decades, beginning with Bremermann [6]. Evolution is often applied to the problem of
feature selection or extraction. The genetic programming (GP) approach of Koza [8] is
chosen in [9] and [10] for its ability to evolve complex function definitions from a set of
primitive operations. Others have used genetic algorithms (GA) [11] [12] for the
selection and weighting of features [13] [14] [15], or for the evolution of polynomial
extractors [16]. And the unique strengths of different evolutionary methods are often
combined into effective hybrid feature extractors [17] [18] [19] [20]. Here, a real-valued
GA with a unique genotype for the problem at hand has been chosen.

2. The Problem

The domain problem used in this work is the classification of odors with an electronic
nose. In particular, we employ a database of fruit juice odors that was reported in [2] and
[21]. The dataset consists of equal numbers of samples representing seven types of fruit
juice , for a total of 280 data samples. Each sample includes sensor responses from 15
different sensors, each response consisting of 60 readings (1 Hz sampling over one
minute). Therefore, each sample consists of 900 values, making feature reduction an
essential preprocessing step.

Due to sensor characteristics, the data is noisy, and exhibits apparent shifts in DC
offset and amplitude (caused by drift) between different samples, especially between
samples taken on different days. The data was compiled over four days, with an equal

20 D. E. Courte et al.

number of "sniffs" from each class sampled each day. These facts, along with the small
size of the data set, provide a challenging preprocessing problem. Features must be
extracted that preserve the real information content of the signals while minimizing the
effects of noise and drift, and effective data partitioning and sampling methods must
minimize the errors often resulting from small data sets used in training. Where
appropriate, these methods are tuned through the use of adjustable parameters, making
the environment quite flexible.

3. Genetic Algorithms

First defined by Holland [11] [12], Genetic Algorithms (GA’s) have since been applied to
a number of difficult optimization problems. Though there are many variants of Holland's
original concept, all GA's iteratively alter a population of candidate solutions, each
represented by an encoding called a chromosome. Each such iteration, or generation,
introduces new chromosomes produced based on the information in one or more existing
chromosomes through operations known as mutation and crossover. These new
chromosomes compete with existing ones for survival based on a fitness function that
estimates their relative success.

While Holland represented chromosomes as bit strings, developers of GA's today
choose a representation for chromosomes that is most appropriate for the problem at
hand. The representation chosen here is a collection of chromosomes that specify a
number of groups of Gaussian kernels, one for each gas sensor. Figure 3 is a graphical
representation of one such group. Both a mutation and crossover operation are included
in the GA, the details of which are discussed later.

14
0.8-\

0.6 4

kernels

0.4

0.2 4

B A . S S —
R AN N R L L S S R

time(s)

Fig. 3. Phenotype for One Sensor. Four unique Gaussian kernels are shown.

Gutierrez-Osuna [21] applied a basic GA to this problem in order to eliminate certain
sensors from consideration, but the four fixed kernels of Figure 2 were still used for all
sensors not eliminated. The objective of this was not only improving classification
performance but also customizing arrays with few sensors for specific applications. In
contrast, the present work allows the GA to select the location, width and number of
kernels independently for each sensor. Note that our approach could also be used to

Evolutionary Optimization of Gaussian Windowing Functions 21

customize small sensor arrays by adding a term to the fitness function that penalized
selection of kernels from many different sensors.

4. System Description

Further details of the GA are discussed here. Key decisions and basic algorithms are
discussed in five areas of interest.

4.1 Data sampling

The particular characteristics of this data set, along with its relatively small size, led to
many problem-specific decisions about the sampling of data for training and testing.
Recall that this classification problem is complicated by the fact that the data samples are
noisy and subject to "drift", a phenomenon that is most pronounced between samples
collected on different days, and that samples were collected over four days. While little
can be done in this system to reduce noise, the effect of drift can be reduced by ensuring

that the data sets used contain an equal (or at least near equal) number of samples
collected each day for each class.

There are 280 classified data samples available, representing seven different odors. For
each odor, there are forty samples, ten from each day. Initially, the data is divided into 5
segments, each containing 56 samples - 2 examples per class and day of data collection.
Other than this restriction, the exact members chosen for each segment is not fixed from
run to run. After the segments are determined, one is chosen as the holdout test data, and
the remaining four are used for training during the evolutionary process.

Due to the small amount of data available, it is important to guard against over-training
the system to a particular choice of the 4 data segments that comprise the training data
set. Therefore, during each generation g, there is a probability that samples will be
permitted to migrate between the 4 segments. It is assumed the samples in each segment
are sorted first by class, then by day. Given the makeup of the segments, this can be
ensured when the original partitioning is done. Because the equal distribution of classes
and days in each segment must be maintained, a migration consists of a simple "swap" of
two samples from the same index in two randomly chosen segments. The probability a
migration will occur is a user-defined parameter known as the migration rate. It is
desirable that the migration rate be relatively small to ensure that only minor changes in
the population characteristics occur between successive generations. This ensures that
changes occurring during one generation will still be valuable in the next generation.

4.2 Representation

A population P, of fixed size np, is maintained throughout execution. The genotype for
one member of the population is a ragged array where the rows represent ng
chromosomes, where ng is the number of gas sensors. Each row in this ragged array
contains between zero and ry,,,, pairs of values, one for each kernel representing the mean
u and standard deviation o of the Gaussian kernel. ng,,, is a predetermined maximum
number of kernels allowed per sensor. The genotype of one possible member of the
population is shown in Table 1. The phenotype for just one of that member's
chromosomes is what is depicted in Figure 3.

22 D. E. Courte et al.

count n o n o n o ® o
3.00 26.00 3.77 34.00 6.32 48.00 3.35

4.00 32.00 3.32 0.00 1.92 17.00 5.43 31.00 1.88
0.00

1.00 35.00 9.31

3.00 3.00 8.87 50.00 4.23 8.00 4.62

2.00 13.00 4.52 30.00 3.12

1.00 6.00 5.07

1.00 46.00 3.98

2.00 33.00 7.94 28.00 5.18

3.00 3.00 4.42 59.00 3.22 36.00 8.67

2.00 44.00 6.52 34.00 7.88

1.00 3.00 6.53

1.00 45.00 7.50

3.00 17.00 9.58 33.00 8.54 9.00 7.25

2.00 44.00 397 44.00 3.97

Table 1. Example Genotype. Count indicates the number of kernels per sensor and a p-o pair
identifies each kernel.

4.3 Dynamic weighting factor

The GA consists of a primary loop that completes once for each generation. In order to
promote diversity and regulate complexity early in the evolution, and yet allow the
population to become stable and consistent late in the evolution, a dynamic weighting
factor is used. The weighting factor is a user-chosen, time-varying function, and is used
to promote “big steps” in the evolutionary search process during early generations, while
promoting “fine tuning” of results later in the process. To accomplish this, a weighting
function that decreases monotonically from 1.0 to a minimum no less than 0.0 is
desirable. This factor will affect data sampling and reproduction, as well as elements of
the fitness measure. Equation 1 defines the weighting factor used to produce the results
discussed later in this paper.

log(g) 1)

w(g.g,..)=1-
log(g,..)

Here g is the current generation number, and g,,, is the predetermined maximum
number of generations the system will run. Use of the natural log allows the factor to
decrease rapidly during early stages of the evolution and more slowly as the system
converges on a solution. We experimented with several different functions for the
weighting factor and chose this one because it consistently produced favorable results.
Figure 4 shows the weighting factor for g,,,.=300.

Evolutionary Optimization of Gaussian Windowing Functions 23

-
.

weighting factor
o
[}

1 23 45 67 89 111 133 155 177 199 221 243 265 287
generation(g)

Fig. 4. Dynamic Weighting Factor w(g, gmax)-

4.4 Evolutionary process

Prior to application of LDA/KNN for a member of the population, the kernels comprising
that member must be used to extract features from the raw sensor data for each sample in
the training data. Given a member of the population, having n kernels defined for sensor j
(represented by [w;, W, . w,] and [0}, O, _ O.]), then a sensor response vector Si of
length m can be reduced to a feature vector R! of length n as shown in equation 2.

ooy

- 2
G(x,u,0) = e‘;{ "M)
W' =[6(.1,0,).6(2.1,,0,),....G(m, 1,0,)i = 1.n
Ri =[S+ W'.,ST+ W2, ST e W"]

2

Here, G(x,u,0) is the Gaussian exponential function that defines the windowing function
for a given w and o, and W' is a vector representing the values of the i windowing
function for x=[1..m]. Each resulting feature in a vector R} can be considered a summary
of the j* sensor’s activity focused at a given moment in time as indicated by the mean of
the corresponding kernel. How closely the measure is focused on that moment is
determined by the width of the kernel defined by its standard deviation.

Training this system is computationally intense. The LDA/KNN algorithm is used in a
four-fold cross-validation. For each generation, the LDA/KNN algorithm is carried out
four times for every member of the population. In turn, each of the four segments of
training data is used as a validation set, while the remaining three are used to compute the
LDA eigenvectors. The KNN classifier is then used to classify the samples in the
validation set, and compute an accuracy measure (percent correct) for each fold. In each
generation, the minimum classification accuracy A; of the four folds is used as an
accuracy measure for each member i of the population. This serves as a basis for our
fitness measure. Two adjustments are made, each of which decreases over time with the
dynamic weighting factor w(g,8,...)-

24 D. E. Courte et al.

Given the goal of reducing the overall number of extracted features, a user-adjustable
complexity threshold value t is set for the total number of kernels in a member of the
population. Beyond that limit, the complexity adjustment ca penalizes the i® member of
the population during generation g (equation 3).

ca(i,g,gm)=—max((§€;)-t,0)x W(g,8umax) (3)

=

Here C' is a vector containing the kernel counts representing member i of the
population, one count for each of the 15 sensors. Note the dynamic weighting factor is
included in the calculation, causing this penalty to ease over time. This focuses the
system on evolving good, small kernel sets early, and encouraging incremental
improvements in later generations.

It is also desirable to ensure during early stages of evolution that a large portion of the
problem space be explored so that early convergence to a local maximum is less likely.
Therefore, members of the population that differ from the individual with the highest
fitness (after applying the above adjustments) are rewarded. This improvised measure
was chosen mainly for its computational simplicity. For each member i of the population
the vector representing the number of kernels for each sensor are compared for equality
to the vector representing the same components for the most accurate individual. The
cells that differ are counted to compute a difference value. The Diversity adjustment da
for population member i during generation g is defined in equation 4.

da(i,a,g,gm)=(§ « gc;>)xw<g,gm))

J=1

Here C' is as defined above, and population member a is the member achieving highest
training accuracy. Assume the operator "=" returns one when its operands are not equal,
zero otherwise. Again, the adjustment is relaxed over time by the dynamic weighting
factor. The diversity adjustment for the most fit individual is set to the value of the
maximum adjustment awarded to others in the population to ensure that individual
maintains the top ranking. More sophisticated diversity measures involving similarity
measures between kernel sets are a topic for future research.

The fitness measurement is complete after the complexity and diversity adjustments

are made. The final fitness f{i,g) of member i of the population during generation g is
then defined by equation 5.:

f(i’a!g’gmax)= wAAi +wcuca(i’g’gmax)

+w,da(i,a,g.8..)

®)

where w,, w,,, and w,, are weighting factors. (Current experiments use equal weighting
factors.)

Evolutionary Optimization of Gaussian Windowing Functions 25

Feature reduction methods are often categorized as either wrapper or filter approaches.
In pattern recognition systems, the difference is distinguished by whether or not the back-
end classification scheme is used to analyze the value of a given feature set. Wrapper
approaches use the classifier and training data to estimate the accuracy of each potential
feature set tested, while filter methods evaluate subsets on less costly measures that do
not involve the classification process [22]. In this work, the fitness function involves both
performance against training data as well as information that is independent of that
performance. Some have called this a filter+wrapper approach [23].

Each generation, allowing only selected individuals to survive and replacing the
remainder with offspring created through mutation or crossover alters the population. A
modified elitist selection strategy [24] is used. The population is first ranked by
descending fitness measure. Then the population is divided into three distinct groups:

* choice members — These are the most fit members of the population, and they
are guaranteed to survive into the next generation.

* desirable members — These are reasonably fit members of the population, and
they each have a probability of survival S,.

* undesirable members — These are the least fit members of the population, and
have a probability of survival S,,.

The size of each of these groups, as well as the probabilities S, and S, are user-defined
parameters. The goal is to achieve a high probability of maintaining good genetic
material in the evolution. The end result is the division of the population P into two
subsets, P° and P", of survivors and non-survivors respectively.

4.5 Crossover and mutation

For each offspring created, the probability of it being the result of crossover is a user-
defined member crossover rate, R,. The probability that it is the result of mutation is then

simply 1- R, In either case, the first step is to select a random individual from the
survivors' subset P’

For crossover, a second individual is chosen randomly from the entire population
P=P°UP". This is a “2™ chance” of sorts for non-survivors, allowing them to contribute
some genetic material to the next generation. It is arguable this more closely resembles
evolution in nature, where longevity is not a requirement for participation in
reproduction.

Recall that an individual consists of several chromosomes, one for each gas sensor.
Once two individuals have been chosen as parents, crossover occurs only between pairs
of chromosomes defined for the same gas sensor from the two parents. For each such pair
of chromosomes having length n and m, with n <m, a uniform crossover [25] is executed:

* Pairs of <u,0> values are chosen for inclusion in positions [1..n] of the

offspring with equal probability from the same positions in each of the
parents.

26 D. E. Courte et al.

* Pairs of <u,0> values from positions [n+1..m] from the longer parent are
chosen for inclusion in the offspring with a 0.5 probability.
* This results in offspring having an average size of (n+m)/2.

If mutation is chosen, there are a total of six different mutations that may occur, one
being the replacement of the entire set of chromosomes with a new set generated at
random. The probability of this occurring is equal to the current value of the dynamic
weighting factor w(g,g,...). This promotes diversity in the early stages of the evolution

when the weighting factor value is high, and stability later when the weighting factor is
low.

If the entire chromosome set is not replaced, individual chromosomes are selected with
a user-defined probability known as the chromosome mutation rate for one of the five

remaining kernel mutations. Once a chromosome is selected, the following mutations are
possible:

* kernel replacement - One of the kernels in the chromosome is replaced with a
new kernel.

* kernel insertion - A new kernel is added to the chromosome.

* kernel deletion - A randomly selected kernel is deleted from the chromosome.

* u adjustment - The p value of a randomly selected kernel is adjusted by a
random integer value in the range [-6..+6].

* 0 adjustment - The ¢ value of a randomly selected kernel is adjusted by an
random real value in the range [-0.1..40.1].

The p and o values for all new kernels are randomly generated within predefined
bounds. The extent of insertion, deletion and adjustments are all also regulated by such
bounds. Once selected for kernel mutation, only one of the five is applied. The
probability of each of these possibilities is provided by the user in the form of a mutation
selection vector M*, holding one value in the range [0..1] for each of the above possible
mutations. Of course, the sum of this vector should be 1.

4.6 Termination and output

Termination of the GA occurs either when an individual is produced that achieves 100%
accuracy during the four-fold training, or when a predetermined number of generations
have elapsed. Using the fruit juice database described earlier, accuracy never reached
100% during training.

Once the evolution is complete, the highest ranked individual is used in the LDA
algorithm, this time using data from all four of the training segments in the LDA
computation of eigenvectors. The holdout test data is then classified using the KNN

classifier, and the resulting test accuracy is compared to the performance of the four fixed
benchmark kernels from Figure 2.

Evolutionary Optimization of Gaussian Windowing Functions 27

5. Results

A series of twenty replicates of the experiment were completed. Below are the user-
defined parameters that were used for these tests. These settings were determined
experimentally via adjustments made between independent sets of runs.

* Each test was run for 300 generations.
* Population size was 20.

» Number of choice members chosen was 5.

» Number of desirable members chosen was 7, with P,=0.9.

» Number of undesirable members chosen was 8, with P,=0.1.
* The migration rate was 0.02.
* The dynamic weighting factor is w(g.g.)=1- _log«8)

- loge(g,,)

* The number of kernels per chromosome was restricted to the range [0..5].
* The complexity threshold was 30.
* The member crossover rate was 0.5.
* The chromosome mutation rate was 0.2.

» The mutation selection vector M® was [0.15, 0.15, 0.15, 0.275, 0.275].
* The o values for kernels were restricted to the range [1.5..10.0].
* The u values for kernels were restricted to the range [0..60].

During training, significant improvement occurred in the average accuracy during
training of the top 50% of the population. Figure 5 shows this improvement over 300
generations of one of the 20 runs. The fluctuations from generation to generation are due
in part to the data migration that occurs on each pass, causing successive generations to
be evaluated on differing training and validation segments. Experimentation showed that
more generations did not often result in significant additional improvements and that
often caused the system to become over-trained to the training set.

© © o o ©
o NoOhA OO

average accuracy
NN
(<2} o

72

70

68

1 40 79 118 157 196 235 274
generation

Fig. 5. Mean Accuracy v. Generation.

28 D. E. Courte et al.

5.1 Overall performance

The results of these tests show that evolved kernels can outperform the four fixed
benchmark kernels when applied to this data. Table 2 summarizes performance against
the benchmark kernels in the 20 tests, while Figure 6 graphically depicts the performance
of each test relative to the benchmark. There is an average improvement in classification
accuracy of 7.07%. The best result showed an accuracy improvement of 18.8%, while the
worst degraded performance by only 4.26%. Analyzed in terms of elimination of errors,
this equates to an average error reduction or 26.3%. In addition the total number of
features extracted during data preprocessing was reduced by an average of 50%. (Recall
the benchmark kernels always result in 60 features). In order to ensure these results are
not dependent on a specific choice of training and test data, each trial shown represents a
new sampling of the data. This accounts for the variation of results using the baseline
kernels. A simple one tail, pair-wise t-test applied to the accuracy vectors for the
benchmark and evolved kernels reveals a 99% confidence of average improvement
greater than 2.9%.

Benchmark
Trial Kernels Evolved Kernels Improvement Complexity'
(% correct) (% correct) (total kernels)

1 76.7857 80.3571 4.65% 26

2 78.5714 89.2857 13.64% 30

3 80.3571 83.9286 4.44% 32

4 75.0000 76.7857 2.38% 33

5 76.7857 83.9286 9.30% 30

6 76.7857 83.9286 9.30% 32

7 78.5714 82.1429 4.55% 27

8 80.3571 85.7143 6.67% 28

9 76.7857 80.3571 4.65% 29
10 76.7857 83.9286 9.30% 31
1 76.7857 82.1429 6.98% 32
12 76.7857 87.5000 13.95% 29
13 76.7857 80.3571 4.65% 27
14 78.5714 87.5000 11.36% 34
15 83.9286 80.3571 -4.26% 30
16 85.7143 83.9286 -2.08% 29
17 75.0000 85.7143 14.29% 29
18 78.5714 92.8571 18.18% 26
19 82.1429 82.1429 0.00% 28
20 75.0000 82.1429 9.52% 30

o 29127 3.6596
Ave 78.30 83.75 7.07% 29.60
Min 75.00 76.79 -4.26% 26.00
Max 85.71 92.86 18.18% 34.00

* Complexity using benchmark kernels is 60.

Table 2. Summary of results.

Evolutionary Optimization of Gaussian Windowing Functions 29

20.00% -
15.00% -
10.00% -

5.00%

Improvement

0.00%

12 3 456 7 8 921011121314

-5.00% -

-10.00% -
Trials

Fig. 6. Mean. Accuracy Relative to Benchmark (20 tests).

5.2 Observed details

The overall performance summarized in the previous section indicates there is an
advantage to evolving custom kernels for data preprocessing in this problem. What
follows are observations about the nature of the evolved kernels themselves. With just 20
test runs applied to a single problem, it is doubtful that any definitive conclusions can be
drawn from these observations, but many are interesting enough to warrant further study
and suggest continued research.

While it is clear from Table 2 that the average complexity (measured as number of
evolved kernels) is reduced from four kernels per sensor to around two per sensor, more
interesting information can be obtained from closer examination of kernel counts evolved
for each sensor over the 20 tests. Figure 7 provides insight into how much useful
information may be provided by each of the 15 sensors. The figure is a compressed view
of 15 graphs, and therefore requires some explanation. Included is a histogram for each
sensor containing six bars representing the six possibilities for kernel counts for that
sensor. (Recall that anywhere from O to 5 kernels could be evolved for each sensor.)
Sensors 0-15 are shown in order, arranged from left to right and top to bottom. The height
of each bar represents the number of test runs (out of 20) that resulted in that count. The
bars range in height from 1 to 12. This graphically shows that the kernel sets for some
sensors tended to evolve more kernels than others, indicating those sensors may contain
useful information at more locations within their responses. Also of note is that for a few
sensors evolution resulted on several occasions in no kernels at all (i.e. the 9%, 11™ and
12" sensors), and that for some sensors there was a tendency toward a particular kernel
count, as in the 2™, 4% and 12™ sensors, where at least half of the 20 tests resulted in the
same kernel count.

Examining only the number of kernels generated for each sensor, while easy to
summarize over the 20 test runs, provides little information about the nature of the
evolved kernels themselves. Figure 8 shows one example of complete sets of evolved
kernels for all 15 sensors. For the purposes of illustration, the sensors’ responses for one
specific “sniff” have been normalized and superimposed on the graphs. The graph clearly
illustrates that the evolved kernel sets are very different from the fixed kernels of Figure

2, presumably focusing more precisely on the discriminating areas of each sensor’s
response.

30 D. E. Courte et al.

3

adils
dnda

©

frequency

1.
...
. .
min

number of kernels

Fig. 7. Kernel Count Frequencies for Sensors over 20 Runs. Large figure is labeled expanded view

of sensor 1.

Evolutionary Optimization of Gaussian Windowing Functions 31

Fig.8. Evolved Kernels for 15 Sensors with one “Sniff”. For illustrative purposes, sensor responses
have been scaled and shifted to align with the kernels.

Another interesting view involves looking at the kernels evolved for a single sensor
over the twenty test runs. It is reasonable to expect that similar kernels might appear in
different test runs, since the goal here is to discover near-optimal kernel sets. However,
given no prior knowledge as to how many optimal sets may exist, there is no guarantee
that such similarities would be apparent. Figure 9 shows the kernel sets for the 3™ sensor
over the twenty test runs. Graphs including similar kernels are highlighted. Here,

“similar” means the kernels focus attention on regions of the sensor response that overlap
considerably.

Larger test suites and tests against different data sets may be necessary to determine
the significance of these observations, but the observations are nonetheless notable. It is
conceivable that extensive testing could determine what subset of sensors is most useful
for a particular problem, or whether or not a given sensor’s signal transient is more or
less important than its eventual steady state value. There are several kernels that appear to

recur (or at least nearly recur) in the sets, indicating these kernels may provide substantial
discriminating power.

32 D. E. Courte et al.

\:>

N
—

JX
N\
%

N

\

Fig. 9. Kernel Sets for Sensor #3 (20 runs). Highlighted (*) graphs show similar kernels evolved
during separate runs.

The widths, positions, and counts of evolved kernels provide useful information, but
those kernels are only useful if they provide information useful in discriminating between
samples from different classes. It is therefore useful to look at the output of individual
kernels applied to input sensor responses. Figure 10 shows the response of one evolved
kernel set for the 2™ sensor to each of the 280 samples in the complete data set, arranged
by class. The vertical dividers mark the class boundaries. Figure 11 does the same for an
evolved kernel set for the 15™ sensor. Both of these kernel sets were the result of the
same test run. The seemingly periodic nature of the graphs within each class is due to the
“drift” discussed earlier in Section 2 and the order in which the samples are presented in
the graph. Recall that the drift is most apparent between days. From left to right, samples
are presented sequentially from days 1, 2, 3, and 4 in a repeating cycle, resulting in a
visual indication of how this drift helps make this a difficult classification problem. It is
clear from examining just these two kernel sets that each kernel shown provides unique

response characteristics, some having more apparent individual discriminating power
than others.

Evolutionary Optimization of Gaussian Windowing Functions 33

it [LA e

Fig. 10. Sensor #2 (2 kernels) Response by Class. Note that scaling differs from kernel to kernel.

o

Al

—Kernel 1

=4

—Kernel 2

£

——Kernel 1

%

.
-

—Kernel 2

LS
h

2

Lt
o

%

——Kernel 3

5

2
23
25
27
29

Fig. 11. Sensor #15 (3 kernels) Response by Class. For each sample, the output (extracted
feature) from each kernel is shown. Vertical dividers separate samples from different classes.

&

6. Conclusions

The system demonstrates that improved data preprocessing kernels for an electronic nose
can be evolved given a system that provides the user with adjustable parameters to
facilitate tuning. Not only can classification accuracy be increased, but also the number
of features extracted during preprocessing can be decreased significantly, lowering the
size of the feature space used for LDA/KNN classification. Not only was overall
classification accuracy observed, but also the output of individual kernels. In addition,

34 D. E. Courte et al.

trends apparent in the evolution of kernel sets for specific sensors have been identified,
which provide information as to what the performance characteristics of each sensor are
for this particular problem. While the size of this test was limited, we believe the results

do warrant further study. Future work could apply this approach to different data and
applications.

Acknowledgements

Funding for this research was provided by the U.S. Air Force AFRL/SNAT grant
F33615-99-C-1441, "Evolving Pattern Recognition Systems". Hardware was made
available for these computations thanks to Dr. Oscar Garcia (grant NSF-9601670) and
Dr. Francis Quek (grant NSF-KDI-9980054, "Cross-Modal Analysis of Signal and Sense:
Multimedia Corpora and Computational Tools for Gesture, Speech, and Gaze Research").

References

[11 J.W. Gardner P.N. Bartlett, "A Brief History of Electronic Noses", in Sens.
Actuators B, pp. 18-9, 211-220, 1994.

[2] Ricardo Gutierrez-Osuna and H. Troy Nagle, "A Method for Evaluating Data-
Preprocessing Techniques for Odor Classification with an Array of Gas Sensors",
in IEEE Transactions on Systems, Man, and Cybernetics - Part B: Cybernetics,
Vol. 29, No. 5, pp. 626-632, Oct. 1999

[31 Robert Schalkoff, Pattern Recognition, Statistical, Structural and Neural
Approaches, John Wiley and Sons, Inc., 1992.

[4] A. Jain, P. Duin, and J. Mao, “Statistical Pattern Recognition: A Review”, IEEE
Transactions on PAMI 22(1), pp. 4-37, 2000

[5] T.M. Cover, P.E. Hart, “Nearest Neighbor Pattern Classification”, IEEE
Transactions on Information Theory, IT-13, 21-27, January 1967

[6] H.J. Bremermann, Optimization through Evolution and Recombination”, Self-
Organizing Systems, M.C. Yovits et al, eds., Spartan, Washington DC, 1962

[71 M.M. Rizki, L.A. Tamburino and M.A. Zmuda, "Evolution of Morphological
Recognition Systems", Evolutionary Programming IV - Proceedings of the 4" Ann.
Conf. on Evolutionary Programming, J.R. McDonnell, R.G. Reynolds and D.B.
Fogel, Eds., pp. 95-106, MIT Press, 1995

[8] J.R. Koza, “Hierarchical Genetic Algorithms Operating on Populations of
Computer Programs”, Proceedings of the 11" Annual Joint Conference on Genetic
Algorithms, pp. 768-774, Morgan Kaufmann, 1989

[91 J.R. Sherrah, R.E. Bogner, and B. Bouzerdoum, “Automatic Selection of Features
for Classification Using Genetic Programming”, Proceedings of the 1996
Australian New Zealand Conference on Intelligent Information Systems, pp. 284--
287, IEEE, 1996

[10] J.R. Sherrah, R.E. Bogner, A. Bouzerdoum, “The Evolutionary Pre-Processor”,

Genetic Programming: Proc. 2" Annual Conference, pp. 304-312, Morgan
Kauffman, 1997

(11]
(12]

(13]

(14]

(15]

[16]

(17]

(18]

(19]

(20]

(21]
(22]

(23]

(24]

[25]

Evolutionary Optimization of Gaussian Windowing Functions 35

J.H. Holland, “Outline for a Logical Theory of Adaptive Systems”, in J. ACM 9
297-314, 1962

J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan
Press, 1975

W. F. Punch, E. D. Goodman, M. Pei, L. ChiaShun, P. Hovland, and R. Enbody,
“Further Research on Feature Selection and Classification Using Genetic
Algorithms”, International Conference on Genetic Algorithms 93, pp. 557-564,
1993

M.L. Raymer, W.F. Punch, E.D. Goodman, P.C. Sanschagrin, L.A. Kuhn,
“Simultaneous Feature Extraction and Selection Using a Masking Genetic
Algorithm”, Proc. 7" International Conference on Genetic Algorithms (ICGA97),
Morgan Kaufmann, 1997

M.L. Raymer, W.F. Punch, E.D. Goodman, L..A. Kuhn, A.K. Jain, “Dimensionality
Reduction Using Genetic Algorithms”, IEEE Transactions on Evolutionary
Computation, Vo. 4, No. 2, July 2000

E.J. Chang, R.P. Lippmann and D.W. Tong, “Using Genetic Algorithms to Select
and Create Features for Pattern Classification”, Proceedings of the International
Joint Conference on Neural Networks, Vol. 3, 1990

H. Vafaie and K. De Jong, “Genetic Algorithms as a Tool for Feature Selection in
Machine Learning”, Proceeding of the 4th International Conference on Tools with
Artificial Intelligence, pp. 200-204 Arlington, VA, 1992

M.M. Rizki, L.A. Tamburino and M.A. Zmuda, "Evolution of Morphological
Recognition Systems", Evolutionary Programming 1V - Proceedings of the 4" Ann.
Conf. on Evolutionary Programming, J.R. McDonnell, R.G. Reynolds and D.B.
Fogel, Eds, pp. 95-106, MIT Press, 1995

C. Guerra-Salcedo, S. Chen, D. Whitley, S. Smith, “Fast and Accurate Feature
Selection Using Hybrid Genetic Strategies”, Proc. Congress of Evolutionary
Computation, pp. 177-184, 1999

L.A. Tamburino, M.M. Rizki, M.A. Zmuda, “HELPR Evolved Pattern Recognition
Systems”, Proc. Of the 5* World Multi-Conference on Systems, Cybernetics and
Informatics (SCI12001), Orlando FL, July 2001

Ricardo Gutierrez-Osuna, Signal Processing and Pattern Recognition for an
Electronic Nose, Ph.D. Thesis, North Carolina State University, 1998

A.L. Blum and P. Langley, “Selection of Relevant Features and Examples in
Machine Learning”, Artificial Intelligence, 97(1-2), pp. 245-271, 1997

J. Bala, K. De Jong, J. Huang, H. Vafaie, and H. Wechsler, “Using Learning to
Facilitate the Evolution of Features for Recognizing Visual Concepts”,
Evolutionary Computation, 4(3), 1996

K.A. DeJong, An Analysis of the Behavior of a Class of Genetic Adaptive Systems,
Ph.D. Thesis, University of Michigan, 1975

G. Syswerda, "Uniform Crossover in Genetic Algorithms", pp. 2-9 in Proceedings
of the 3™ Intl. Conf. on Genetic Algorithms and their Applications, J.D. Schaffer,
Ed., Morgan Kaufmann, 1989

