
6

Mass Digitization of Early Modern Texts With Optical

Character Recognition

MATTHEW CHRISTY, ANSHUL GUPTA, ELIZABETH GRUMBACH, LAURA MANDELL,
RICHARD FURUTA, and RICARDO GUTIERREZ-OSUNA, Texas A&M University

Optical character recognition (OCR) engines work poorly on texts published with premodern printing technologies. Engaging

the key technological contributors from the IMPACT project, an earlier project attempting to solve the OCR problem for early

modern and modern texts, the Early Modern OCR Project (eMOP) of Texas A&M received funding from the Andrew W. Mellon

Foundation to improve OCR outputs for early modern texts from the Eighteenth Century Collections Online (ECCO) and

Early English Books Online (EEBO) proprietary database products—or some 45 million pages. Added to print problems are

the poor quality of the page images in these collections, which would be too time consuming and expensive to reimage. This

article describes eMOP’s attempts to OCR 307,000 documents digitized from microfilm to make our cultural heritage available

for current and future researchers. We describe the reasoning behind our choices as we undertook the project based on other

relevant studies; discoveries we made; the data and the system we developed for processing it; the software, algorithms,

training procedures, and tools that we developed; and future directions that should be taken for further work in developing

OCR engines for cultural heritage materials.

CCS Concepts: • Applied computing → Optical character recognition;

Additional Key Words and Phrases: Machine learning, digital humanities

ACM Reference format:

Matthew Christy, Anshul Gupta, Elizabeth Grumbach, Laura Mandell, Richard Furuta, and Ricardo Gutierrez-Osuna. 2017.

Mass Digitization of Early Modern Texts with Optical Character Recognition. ACM J. Comput. Cult. Herit. 11, 1, Article 6

(December 2017), 25 pages.

https://doi.org/10.1145/3075645

1 INTRODUCTION

Special collections departments in libraries around the world contain documents published in English from 1476
to 1800, both in England and America. More than 300,000 documents—roughly 45 million pages—from this early
modern era have been digitized by vendors for these libraries. However, the path to digitization was not ideal:
these documents were imaged in the late 1970s, transformed into microfilm during the 1980s, and the microfilms
digitized in the 1990s. Because of the state of reproductive technologies during the late 20th century, as well as the
circuitous path to digitization (through microfilm), the image quality is very poor and bitonal, with no greyscale

This work was supported by an Andrew W. Mellon Foundation grant (31200645).

Authors’ addresses: M. Christy, E. Grumbach, and L. Mandell, English Department, Texas A&M University, College Station, TX 77843; emails:

{mchristy, egrumbac, Mandell}@tamu.edu; A. Gupta, R. Furuta, and R. Gutierrez-Osuna, Computer Science and Engineering Department,

Texas A&M University, College Station, TX 77843; emails: {anshulg, furuta, rgutier}@tamu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first

page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy

otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions

from permissions@acm.org.

© 2017 ACM 1556-4673/2017/12-ART6 $15.00

https://doi.org/10.1145/3075645

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

https://doi.org/10.1145/3075645
mailto:permissions@acm.org
https://doi.org/10.1145/3075645

6:2 • M. Christy et al.

images available. Furthermore, the original documents themselves, printed with premodern technologies, pose
problems even for human readers of their pages, but much more so for optical character recognition (OCR)
engines. For example, printed characters were not perfectly situated on a baseline, blackletter fonts were used,
ink bled through the paper, and the typeface was broken and overworn. Moreover, these documents are aged:
pages are missing, ripped, or blotted with handwritten marginalia and spilled ink.

For the sake of effective cultural research, the humanities require that these documents are available not as
images but as keyed text. If all that is preserved are page images, some of them with very inconsistent and
obfuscatory metadata, they will become part of a “dark archive”—preserved but fundamentally undiscoverable
by search algorithms. So worrisome is this problem that a report commissioned by the European Commission [1]
warned that without adequate preservation of and discovery tools for cultural heritage materials, Europe is in
danger of “entering a new Dark Age.” Recognizing OCR as central to this task, the European Commission funded
the Improving Access to Texts (IMPACT) group for 4 years to improve OCR for cultural heritage materials.1

Preliminary research to be completed and published this year indicates that in the best OCR currently available,
as many as 57% of search returns are missed when a user searches for a bigram of words that are hard for OCR
engines to process because of early modern fonts, and 47% for the easiest bigrams [2]. This means that all work
currently being performed in the field of cultural analytics on documents published before 1800—stylometry,
word counts, topic modeling, cluster analysis, and feature extraction, as well as simple word search—is pro-
ducing conclusions that are only about 50% reliable. As IMPACT put it when they started, “[Optical Character]
Recognition [results] are poor or even useless. No commercial or other OCR engine is able to cope satisfactorily
with the wide range of printed materials published between the start of the Gutenberg age in the 15th century
and the start of the industrial production of books in the middle of the 19th century.”1

Thus, our capacity to mechanically transcribe early modern texts with less than optimal page images must
be improved. Engaging the key technological contributors from IMPACT to improve on their contributions (see
Section 2), Texas A&M received funding from the Andrew W. Mellon Foundation to run the Early Modern OCR
Project (eMOP), a 2-year, multipartner endeavor to improve OCR outputs for early modern texts,2 specifically
those from the Eighteenth Century Collections Online (ECCO) and Early English Books Online (EEBO) propri-
etary database products—approximately 45 million pages. This article describes the development of eMOP—its
computer systems architecture, software tools, and data workflows. We discuss the challenges that we encoun-
tered to generate high-quality OCR outputs from the ECCO and EEBO collections, which result from poor image
quality, variability in typefaces and page layout, and lack of ground-truth data. We will present computational
techniques to address these issues and validation results.3 The article concludes with a discussion of the lessons
learned during the project, the significance of our findings, and ongoing work and future directions.

2 RELATED WORK

The work reported in this article draws from many threads developed over the past 30 years as large-scale digital
libraries and high-speed networked computers have been transformed from specialized facilities available only
to the few scholars lucky enough to be affiliated with elite universities, high-powered governmental laboratories,
and the largest corporations to resources we now expect to be available as a common tool of the trade. Encouraged
by these resources, collections of literary source material have been created, both those focused primarily on
volume—large collections of materials without a particular thematic focus—but also others focused on specific
academic disciplines. In the first category, examples include the ubiquitous Google Books4 (launched in 2002), the

1http://www.impact-project.eu/about-the-project/concept/.
2http://emop.tamu.edu.
3Sections 2.1 and 4 of this article are derived from a previously published conference paper [3].
4https://books.google.com/.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

http://www.impact-project.eu/about-the-project/concept/
http://emop.tamu.edu
https://books.google.com/

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:3

pioneering Project Gutenberg5 (initiated in the 1970s), the Million Book Collection6 (also launched in 2002), and
the HathiTrust7 (launched in 2008). Pioneering exemplars of collections focused on a specific academic area of
interest are Crane’s Perseus Project8 [4], Landow’s Victoria Web,9 Price’s Whitman Archive,10 McGann’s Rossetti
Archive,11 and the William Blake Archive12 (edited by Eaves, Essick, and Viscomi). The work associated with
these pioneering projects naturally separated into acquiring digital representations of books and manuscripts,
manually or automatically converting some or all of the textual portions into more computer-readable formats,
and creating scaffolding to allow the use of the materials by scholars and other readers. Our project focuses on
the critical aspect of the middle step—the conversion from images of text to machine-readable text (e.g., OCR).

As adumbrated earlier, many of the pages that provide the source for our work are bitonal scans from micro-
film, created following the standards in use when they were first photographed and digitized but not as rich as
would be scans created using more modern standards (e.g., see the conversion trade-offs described in Cornell
Library’s Moving Theory Into Practice: Digital Imaging Tutorial13). Thus, our algorithms must operate without
information from greyscale or color spectra. The content itself also raises questions about design assumptions
embedded in modern OCR programs. Changes in printing technology and standards from the early modern pe-
riod to the present (printing practices only became “modern” around 1820 in the West) reduce the effectiveness of
current OCR engines, which are tuned for the regularity and consistency of today’s digitally generated printing
rather than the variations in type and composition that result in the analog print process, and OCR engines cer-
tainly had not been developed to accommodate the vagaries of premodern print—until the IMPACT and eMOP
projects began.

IMPACT focused on (1) producing ground-truth documents, for which they developed the Aletheia tool, dis-
cussed in Section 3.2; (2) developing language-specific resources—dictionaries and postprocessing routines con-
taining corrections for each language’s most common OCR errors; and (3) training an ABBYY Finereader engine
to read as many types of documents as possible. IMPACT has not published the correctness rates that they
achieved.14 Based on personal communications with IMPACT consultants on eMOP, we believe that the his-
torical OCR problem that IMPACT sought to address remained unsolved. Hence, eMOP sought to address the
following issues:

(1) IMPACT used an engine (ABBYY Finereader) that is not open source; we chose to use Google’s Tesseract,
which is open source and built for enhanced line detection [5, 6]; thus, it outperforms ABBYY in finding
line bases even when they are uneven.

(2) IMPACT used ABBYY Finereader’s built-in image processing—its effectiveness decreasing as image quality
decreases. Working on high-quality images provided by European libraries, the IMPACT workflow was not
designed to deal with poor images.15 eMOP was necessary because most of the early modern documents

5https://www.gutenberg.org/.
6http://www.ulib.org/.
7https://www.hathitrust.org/.
8http://www.perseus.tufts.edu/hopper/.
9http://www.victorianweb.org/misc/vwintro.html.
10http://www.whitmanarchive.org/.
11http://www.rossettiarchive.org/index.html.
12http://www.blakearchive.org/blake/.
13https://www.library.cornell.edu/preservation/tutorial/conversion/conversion-01.html.
14The ABBYY engine enhanced by IMPACT is available only if one joins the Centre of Competence, paying an annual fee, and arranges for

an ABBYY license as well. The “IBM Adaptive OCR Engine” that includes the capacity to train the ABBYY engine that they created is not

available for testing and use. It is unknown if it is available for purchase, but this option is not identified on their Web site.
15Page images of documents comprising the EEBO and ECCO collections have a history: the early modern holdings at the British Library

were scanned and made into microfilm in the 1970s and 1980s, then the microfilm was transformed into digital images in the 1990s.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

https://www.gutenberg.org/
http://www.ulib.org/
https://www.hathitrust.org/
http://www.perseus.tufts.edu/hopper/
http://www.victorianweb.org/misc/vwintro.html
http://www.whitmanarchive.org/
http://www.rossettiarchive.org/index.html
http://www.blakearchive.org/blake/
https://www.library.cornell.edu/preservation/tutorial/conversion/conversion-01.html

6:4 • M. Christy et al.

digitized to date are based on microfilm.16 Thus, denoising algorithms were needed to handle the most
problematic low-quality images (Section 2.1).

(3) IMPACT faced two challenges with ABBYY. First, as their experience demonstrated, training a single en-
gine to handle multiple fonts led to poor recognition results. Instead, we decided to use a triage mechanism
to sort documents according to the specific fonts used in printing them and then develop font-specific OCR
engines for each type of font (see Section 2.2). Second, IBM Haifa developed for IMPACT the Concert tool,
which presented a human being with all candidates that the ABBYY Finereader engine read as a particular
letter. The humans were asked to eliminate the engine’s incorrect identifications. However, the degree to
which this improved OCR outputs was unclear. In our project, we instead focused on human-in-the loop
for selecting the best instances of letter images that were properly identified (not vetting all images), as
identifying a few example images was more directly related to the input needed to train the Tesseract
engine.

The best OCR results available for the low-quality page images digitized from microfilm collections to date
have been produced by the company Prime Recognition, which uses six of the top commercial OCR engines
and a voting algorithm to choose the best guess for any word. We compare our results using Tesseract to Prime
Recognition’s results in Section 7.

2.1 Denoising OCR Outputs

Several studies have focused on postprocessing techniques to correct errors in OCR outputs by modeling ty-
pographical variations in historical documents (see Reffle and Ringlstetter [7] and Reynaert [8] and references
therein). As an example, Alex et al. [9] proposed two OCR postprocessing methods for the problems of end-of-
line hyphen removal and substitution of long-“s” (recognized as “f”) to letter “s” (e.g., “fenfible” to “sensible”).
Using dictionary-based methods, the authors reported a 12.5% reduction in word error rates. For these techniques
to be effective, however, noise in page images must be removed in advance.

Certain image features, “noise,” correlate with OCR performance. These include global properties, such as
the amount of black background speckle, image sharpness, and uniformity, as well as local properties of the
text, such as stroke thickness and continuity, and character/word height to width ratio [10]. A few studies have
focused on improving OCR performance by preapplying image restoration techniques, such as deblurring, skew
removal, and bleed-through removal. However, these techniques should not be blindly applied but should be
used selectively based on the type of noise or degradation present in the document. For this purpose, Lins et al.
[11] developed a method to identify five types of noise (bleed through, skew, orientation, blur, and framing) based
on image features, such as palette, gamut, or number of foreground pixels. The authors found that the overhead
of this noise classifier was far lower than running the image through all of the filters, some of which were not
necessary for any given image. In related work, Sandhya et al. [12] developed a taxonomy of image noise in
historical documents that extends beyond the five categories of Lins et al. [11]. Their taxonomy considered four
types of noise sources: aging, digitization and storage, physical factors (e.g., folding, burn, bleed through), and
document factors (e.g., varying fonts, mixed alphabets). More recently, Farahmand et al. [13] reviewed image-
processing techniques for removing ruled-line noise, marginal noise, clutter noise, stroke-line pattern noise,
background noise, and salt-pepper noise.

Novel to eMOP is using the document’s structure detected by the OCR engine rather than the images them-
selves to identify pages that require additional processing and to direct that processing; this includes denoising
and possible referral for human assistance.

16There was a big microfilming push in the late 20th century that includes EEBO, ECCO, Readex’s North American Imprints, the Burney

Collection of early newspapers (Gale), and 19th-century journal collections (ProQuest). More than 100 million page images comprising these

collections were digitized.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:5

2.2 Typeface Identification

Turning to the second topic, our evaluation of font classification draws from the observation that the fonts and
layout of the historical documents vary substantially from one document to other, which makes training a single
high-performance OCR engine difficult. Ait-Mohand et al. [14] proposed an HMM-based multifont OCR system
that modifies its HMM model for each document to better recognize a specific font class. When tested on a dataset
with 17 modern font classes, the authors reported a 98% recognition rate, which is very close to the recognition
rates of monofont OCR systems used for single-font texts (99%). An alternative to adapting a multifont OCR
model is to train multiple monofont OCR systems and direct documents to the respective OCR engine. However,
this requires that the font class of each document be identified in advance.

In an extensive literature survey, Ghosh et al. [15] organize font recognition methodologies into two cate-
gories based on the extracted features: structure based, and appearance based. Structure-based methods extract
the connected components of characters and analyze their shape and structure to recognize particular fonts. In
contrast, appearance-based methods use features that can capture the visual appearance of the individual char-
acters and the way they are grouped into words, lines, and paragraphs. These two categories are further divided
according to whether they operate at the document, page, paragraph, or word level. Rani et al. [16] presented
a character-level font identifier. Using Gabor and gradient features and an SVM classifier, they reported 99%
average accuracy in identifying fonts on a dataset with 19,000 images of characters and numerals from 17 fonts
for the English language and 14 fonts for the Gurmukhi language.

Whether they are used to classify documents, words, or characters, font identification systems incur a large
cost to generate sufficient labeled data for training. However, recent studies have shown that active learning
can be very effective in reducing the large overhead of labeling data [17, 18]. Unsurprisingly, active learning
has begun to garner attention in the document analysis community. For example, Bouguelia et al. [19] proposed
a semisupervised active learning algorithm for stream-based classification of documents into multiple classes,
such as bank checks, medical receipts, invoices, or prescriptions. Compared to a model built with a fully labeled
training dataset, active learning provided a 2% to 3% precision boost while using on average only 36% of the
labeled data.

Based on these studies and the experience of the IMPACT group, we decided to use the monofont training
approach and develop training sets that would be run on documents according to their font. We launched eMOP
intending to identify fonts through metadata analysis—correlating early modern print shops with the typeface
that they used, then sorting texts according to printer/font. That proved to be a monumental task, and although
we are continuing to research this, our Publisher Imprint Database does not yet contain font information. To
compensate, we began developing semiautomated methods for font identification, most crucially distinguishing
between roman fonts and blackletter, described fully in Section 6. eMOP created upward of 40 font training sets
for the Tesseract OCR engine—some of them roman, some blackletter. Particular sets among them work well on
most roman fonts and others on most blackletter fonts. Combining the two kinds, however, reduces accuracy. An
OCR engine that has been trained for reading both kinds of font will produce poor outputs because the difference
between a roman “a,” for example, and a blackletter “a” is greater than the difference between a roman “a” and
“o” or “a” and “c.” Thus, our algorithm for semiautomated identification of fonts is crucial to the project. Again,
novel to the eMOP approach for identifying fonts was using hOCR output rather than page images, significantly
reducing the amount of time and energy needed to identify typefaces.

2.3 OCR With a Human-in-the-Loop

Human-in-the-loop has been applied to the OCR process in the past. In the early 2000s, Newby and Franks
[20] applied what they called distributed proofreading to the task of proofreading scanned books for Project
Gutenberg. An early instance of crowd sourcing, Distributed Proofreading interface focused completely on the
task at hand, providing page scans and editable transcripts in a single window. Von Ahn [21] recognized that

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:6 • M. Christy et al.

Fig. 1. (a) eMOP system architecture. (b) Steps in the eMOP controller. HPCC, high-performance computing cluster; NAS,
network attached storage; DB, database; IDHMC, Initiative for Digital Humanities, Media, and Culture; OCR, optical char-
acter recognition.

a wider group of participants could be recruited if the task provided were recast into a game format—in other
words, if the task were carried out as a side effect of an activity that the participant wanted to or needed to
carry out. He called this Games With a Purpose and elucidated guidelines for their design [22]. His reCAPTCHA
[23], which controls access to information to exclude bots, has successfully been applied to large-scale character
recognition tasks, including the transcription of the New York Times back library. The National Library of Finland
also has applied the gamification principle to verify the OCR of their archives in the DigitalKoot Project.17 The
project has provided several games using animated cartoon characters that are controlled as OCR verification
tasks are carried out, as well as TypeWright, a crowd-sourced correction tool for distributed proofreading (see
Section 3.2), but our main focus was developing Franken+ for training Tesseract, which dramatically improved
OCR results by allowing us to create training sets that could be applied to documents with a particular typeface
(see Section 6).

3 SYSTEM ARCHITECTURE

When work began in October 2013, the eMOP team faced a daunting task. The project had a 2-year lifespan,
but assuming a cursory estimate of 1 minute per page, processing 45 million pages would require more than
17 months of constant work. Before processing could start, however, we would need to gather and clean the
available metadata from multiple sources, ingest that into a database, test the available open-source OCR engines,
develop additional tools and methods to improve OCR results on early modern documents, establish a workflow,
learn to exploit a multiprocessing computing infrastructure for our needs, and create software to integrate all
of these tools. The result was a workflow that incorporates nine new tools, using training from more than 20
typefaces, powered by the huge (by humanities standards) eMOP database, managed by a task scheduler (the
eMOP controller), with human oversight through an online user interface (the eMOP dashboard), all performing
OCR (via Google’s Tesseract) and postprocessing page images on 128+ processors for more than 3 months.18

The overall system architecture is illustrated in Figure 1(a). A dedicated virtual machine (VM) Web server
provides online access to the system through the eMOP dashboard, per user authentication. The dashboard
displays the contents of the eMOP database, allows users to schedule selected page images for processing (by the
eMOP controller), and displays OCR results and accuracy scores. The dashboard provides access to the eMOP
database through a Rails-based application program interface (API). Page images are processed by the eMOP
controller on the Brazos high-performance computing cluster (HPCC), located in College Station, Texas. To
minimize database access hits, data transfers—whether from the database to the HPCC in the form of page images

17http://www.digitalkoot.fi/.
18With the exception of the eMOP database, which contains proprietary data, all of these tools and font training sets are available open

source at the eMOP GitHub page: https://github.com/Early-Modern-OCR/.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

http://www.digitalkoot.fi/
https://github.com/Early-Modern-OCR/

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:7

selected for processing, or vice versa in the form of results—are done in batches with JSON formatted files. A
dedicated SQL database server was created to host both the eMOP database and a database of Google 3-grams
for postprocessing OCR correction. The eMOP database consists mainly of a table of metadata describing each
document; a table of metadata describing each page image, including file locations, and ground-truth availability
and location; and a table of results data for each page. Network connections between the Brazos HPCC, database
server, and dashboard server are 10Gbps. A network attached storage (NAS) unit provides connection between
the Brazos HPCC and permanent file storage of page images, original OCR, ground-truth files, and results files.
File transfers between the NAS and Brazos HPCC are handled by Globus Online, making the eMOP controller
more portable.

The main eMOP workflow is executed by the eMOP controller and constitutes work that is performed on
every page image. The eMOP controller is a Python framework calling processes, written in various languages,
in a pipeline of processing and postprocessing algorithms created for eMOP. Parallelization on the Brazos HPCC
is performed by running an instance of the eMOP controller on a single page image, on one processor at a time.
The Texas A&M University Initiative for Digital Humanities, Media, and Culture (IDHMC) has 128 processors
dedicated to its use and more than 500 more available when not in use by other research groups. The eMOP
controller is described more fully in Section 3.1. An extended eMOP workflow contains additional work that
does not need to be done for every page. This extended workflow consists of tools that handle the creation of
training for Tesseract and postprocessing correction (see Section 3.2).

3.1 The eMOP Controller

The eMOP controller is a pipeline of various software components that turns page images into their text and
XML equivalents. The main eMOP workflow is embodied in the eMOP controller and its interactions with the
eMOP dashboard, eMOP database server, NAS, and Brazos HPCC. Illustrated in Figure 1(b), the eMOP controller
works in five distinct phases.

Phase 1: OCR. An authorized user interacts with the eMOP dashboard to select documents in the collection
to be processed via optical character recognition (“OCRd” for short) with Tesseract. A dialogue box allows the
user to select the OCR engine and, where applicable, which training set to use. The dashboard also serves as the
point of contact between the eMOP controller and the eMOP database via an API.

—The eMOP controller queries the dashboard for information pertaining to all selected documents’ pages
(image file location, ground-truth info, current job status). The dashboard returns information from the
eMOP database in the form of a JSON response, which the eMOP controller writes as a set of input files
to a temporary location on the Brazos HPCC.

—The scheduler splits pages into jobs with an equal number of pages for each available processor on the
Brazos HPCC. These jobs are then assigned to a processor queue for processing, where the eMOP con-
troller is called for each page.

—Finally, TIF page images are OCRd using the training specified by the user in the dashboard at job sub-
mission. Text and hOCR19 files are produced and saved on the NAS.

Phase 2: Post processing. The hOCR outputs are processed with a series of custom algorithms to remove noise
and split pages into multiple columns. These algorithms are described in detail in Section 4, but an overview is
included here for completeness:

—A denoising algorithm analyzes the hOCR output to remove “noise words”: page noise and images that
Tesseract incorrectly identified as words. Specifically, the algorithm looks at the coordinates of word

19hOCR is Tesseract’s proprietary XML-like format containing the layout and logical structure of the document, including the coordinates

of the BB for each recognized word along with its text transcription and recognition confidence.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:8 • M. Christy et al.

bounding boxes (BBs) to identify words whose position and size indicate that they are not part of the
page’s text block. The denoising algorithm is run on every page that is OCRd and takes the page’s hOCR
files as input. It produces an XML file with noise words removed, which is written to the NAS. The
algorithm also produces a measure of noise for the page that is written to the page’s JSON results file for
inclusion in the eMOP database.

—A multiple-column and skew detection algorithm analyzes the distribution of BBs in the page to identify
when multiple columns are present in a page image and estimate their locations. The algorithm also
identifies and measures the amount of skew present. These values are then written to the JSON results
file of each page.

—A final algorithm creates a new text version of the output with the noise words removed and writes it to
the NAS.

Phase 3: Page evaluation. The page evaluator is the first step in the page correction process. It evaluates the
text produced by the denoising algorithm for each page to determine whether it fits the profile expected from
a “normal” page of text. The page evaluator examines several document properties, including number of words
(tokens) on the page, average word length, occurrence of continuous strings of repeated characters, length of
each word compared to page average, interspersion of alphabetic and numeric characters, punctuation in a word,
and proportion of words in the dictionary. Using this information, the page evaluator creates a score for estimated
correctability (ECORR) and estimated page quality (ECORR normalized by the number of words on the page).
These values are then added to each pages’ JSON results file for inclusion in the eMOP database.

Phase 4: Page correction. Pages undergo correction based on early modern dictionaries and a database of Google
3-grams collected from early modern documents. The dictionaries include alternate and abbreviated spellings
with special characters and ligatures converted to modern, multicharacter equivalents. The system includes
multiple English language dictionaries, as well as a French dictionary and a Latin dictionary. The page corrector
takes as input a denoised XML file containing the denoising confidence measures. Starting with the first three
words on the page, the page corrector performs the following sequence of steps:

(1) Look up each word in the dictionaries for a match, and make character substitutions for each word in
search for other possible dictionary matches.

(2) Use all possible matches of each word to look for matches in the Google 3-gram database. Matching 3-
grams are weighted based on the number of uses in the original texts. Words that matched in the dictio-
nary without substitution are given more weight. This information is then used to determine the correct
“matching” 3-gram.

(3) Shift the analysis window to the next three words in the document (two words from the previous window
and the next word in reading order) and repeat the previous two steps.

Once each page has been completed, the page corrector creates an ALTO20 XML file and a text file containing
all corrections.

Phase 5: Post analysis. In a final (optional) step, pages with ground-truth equivalents21 are scored using Juxta-
CL and one of three character distance measurement algorithms (Levenshtein, Jaro-Winkler, and Juxta). The
Juxta score is then written to the JSON response file for each page. Each page’s job status is updated to “Done.”
Additional details of this postanalysis are included in Section 5.

20ALTO is an open XML schema developed by the Library of Congress for OCR text and metadata (layout) information. We decided to

use ALTO (instead of hOCR) since it is compatible with library-quality metadata standards such as Metadata Encoding and Transmission

Standard and Dublin Core.
21The JSON input file contains a flag about whether ground truth is available for each page and the file path information for any ground-truth

files.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:9

Fig. 2. Screenshots of the additional tools developed for eMOP: Franken+ (a), TypeWright (b), Cobre (c), and AWL Editor (d).

When a processor completes every page in its job queue, the dashboard writes all associated JSON response
files to the eMOP database. Document and page-level results are then viewable via the dashboard.

3.2 Additional Software Tools

In addition to the eMOP controller, our team has produced several other software tools for an expanded workflow,
from producing training for Tesseract to crowd-source correction and typeface identification. Among these tools,
four are beneficial to mention here:

—Franken+ is an IDHMC-created tool that allows the user to create training for early modern, or any
nonstandard, typefaces, which greatly improves Tesseract’s accuracy. Testing showed that when training
Tesseract with typefaces of variable quality, it was important to remove bad exemplars of glyphs from
the training set. Glyph exemplars can be of variable quality due the original printing, which could con-
tain bleed through, or over- or underinking, or because of low-quality digitization of the page images.
Franken+ allows us to easily compare several exemplars of every glyph from several page images and
exclude those that were not representative of the typical exemplar. Doing so allows us to greatly improve
direct accuracy. A screenshot of Franken+ is shown in Figure 2(a).

—TypeWright is a crowd-source transcription correction tool created by Performant software for the
18thConnect.org Web site, managed at the IDHMC. Academics and nonacademics alike can view original
page images, along with previously created mechanical or human transcriptions, and correct them. When
a document is completely corrected, the corrector can then receive the full text and/or XML transcriptions
to use as he or she likes. With eMOP complete, the previously un-OCRd EEBO collection has been added
to TypeWright along with ECCO.

—Cobre is an online typeface identification and document comparison tool available to scholars. Cobre was
created by the Texas A&M Libraries to aid scholars with the close examination of page images, enabling
per-page typeface identification. In addition, Cobre allows scholars to compare multiple page images, at
various magnifications, from various editions or copies of the same text. With access to eMOP-produced
transcribed texts from all copies as well, Cobre allows scholars to cut and paste transcribed text between
versions to more easily create a corrected transcription of a particular document.

—Aletheia Web Layout (AWL) Editor was created by Pattern Recognition and Image Analysis (PRImA) Re-
search Lab as a plugin for TypeWright. With the AWL Editor, users can, on a per-page basis, identify and
transcribe paratext (marginalia, headers, stop words, etc.) to be exported as encoded XML with the rest
of the document text corrected in TypeWright.

3.3 The eMOP Workflow

The eMOP workflow focuses on postprocessing page images (i.e., after Tesseract OCR transcriptions have been
produced) rather than preprocessing. Although most of the page images in our corpus would benefit from

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:10 • M. Christy et al.

preprocessing (e.g., contrast enhancement, deskewing, dewarping), the size of our corpus made it prohibitive
to determine which page requires what type of preprocessing. Rather, we focused our efforts on postprocessing
page images based exclusively on information provided by Tesseract. Nonetheless, in addition to creating the
best possible text transcriptions, we also gathered additional information from page images that would allow
us to add preprocessing algorithms to our workflow at a later time.

The eMOP workflow begins by creating a training set of EM typefaces for Tesseract. Using Aletheia and
Franken+ , we created training for more than 40 different typefaces in roman, italic, and blackletter families of
varying point sizes and moved them to the Brazos Cluster for use by the eMOP controller via the dashboard. The
dashboard could then be used to select documents for processing using a given set of training fonts. Because it
is not known in advance which typefaces are used in which documents, a master training set was created from
most of the EM typeface training produced. The hOCR produced is used by the typeface identification algorithm
described in Section 6. To rerun documents that had been classified according to typeface, we developed training
sets specifically designed for roman fonts and others for blackletter fonts.

Once a batch of documents or pages is submitted via the dashboard, the eMOP controller retrieves the relevant
page images and any available ground-truth files from the NAS. The batch is split into jobs of an equal number
of pages and scheduled on a minimum of 128 processors in a queue dedicated for IDHMC use. A greater number
of processors are also available for use via background queues that take advantage of unused Brazos Cluster
processors. At any one time, eMOP is capable of processing 128 to 512 page images in parallel. The eMOP
controller then handles processing each page image according to the steps in Figure 1(b). Tesseract is run on
each page image using the training selected in the dashboard, and its hOCR output is passed to the denoising
algorithm to remove page noise incorrectly identified as text. This kind of page noise is common in our document
corpus due to dirty page images, bad digitization, ink bleed through, and the like, but also, importantly, from the
presence of images, maps, and common decorative elements. As such, denoising is an important first step in our
postprocessing. Denoising results are then sent to a multicolumn skew detection algorithm to gather data to be
used in later preprocessing of the page images: images can be deskewed using image enhancement software such
as ImageMagick22; columns are run as separate pages so that the OCR engine does not attempt to read the page
across. Documents that are noisy beyond recognition, determined by the OCR quality prediction (Section 5), are
entered into a database of unreadable documents, designed to give libraries an idea of which particular early
modern documents need to be rescanned using better imaging techniques. (That database is not yet complete.)

After running the pages, the page evaluation and correction algorithms are then called on the resulting XML
files and utilize a database of period-specific 3-grams culled from Google Books data and a set of word lists
employing variant spellings, abbreviations, and other lexical differences. The result is an ALTO-formatted XML
file of corrected text including confidence measures gathered from both Tesseract and denoising results and
variant possibilities of words. These algorithms also collect data for every page (e.g., number of words corrected,
corrections made), which can then be used to further improve the eMOP workflow. The final output is then
scored using Juxta-CL, on pages with ground truth available, to produce a score for those pages indicating the
correctness of our results at the page level. At this point, the text transcriptions produced are then ingested into
TypeWright for further correction through crowd sourcing and into Cobre for typeface identification by scholars.

4 DENOISING OCR OUTPUTS

Page images in the eMOP corpus are generally below the quality expected by OCR engines. They are third-
generation copies (original to film, film to microfilm, microfilm to digital file) that had already been binarized
with an unknown method—the average file size of our page images is around 50KB. Many images are made
from documents that were already in poor shape due to age and damage. Adding to this, the documents had
been printed at the beginning of the print era (when the technology was new and of variable quality), so many

22https://www.imagemagick.org.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

https://www.imagemagick.org

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:11

Fig. 3. (a) OCR output for a document in our collection; BBs are shown in green. (b) Segmenting columns by identifying
troughs in the horizontal distribution of BBs. Reprinted with permission from “Automatic assessment of OCR quality in
historical document” A. Gupta et al., Proc. 29th AAAI Conf. on Artificial Intelligence (AAAI 2015), pp. 1735-1741. Copyright
© 2015, Association for the Advancement of Artificial Intelligence.

of the page images exhibit problems such as bleed through, overinking, and underinking. Finally, during the
digitization process, many pages became skewed or warped. As a result, when a document has poor quality, the
OCR engine generally produces a large number of spurious BBs in addition to those that correspond to words
in the document (see Figure 3(a)).

To address these issues, we developed algorithms to identify and filter noisy OCR outputs. As noted earlier,
for each document image, Tesseract produces an hOCR data file containing the coordinates of the BB for each
recognized word along with its text transcription and recognition confidence. It is the hOCR file, not the un-
derlying image, that we use for denoising. As we will show, it is possible to discriminate between noisy and
text BBs by analyzing statistical differences in their shape, size, position, and confidence score. This approach is
advantageous for two main reasons. First, it does not require dedicated image processing algorithms [13], which
can become prohibitive for large document collections. Second, the approach is language agnostic because it
relies exclusively on geometrical properties of BBs rather than the text transcription associated with them. Our
approach for discriminating text and noise BBs consists of three steps: prefiltering, column segmentation, and
local iterative relabeling.

Step 1: Prefiltering. The denoising process starts by generating initial labels for each of the BBs returned by
Tesseract. For this purpose, we use a rule-based classifier that considers three features for each BB: word confi-
dence, height-to-width ratio, and area. The rules are derived as follows:

—Rule 1: OCR word confidence. BBs with very low or very high confidence predominantly consist of noise
and are flagged accordingly during prefiltering.

—Rule 2: Height-to-width ratio. Most words are written horizontally, so the height-to-width ratio is generally
lower for word BBs than for noise BBs. Consequently, if this ratio is less than a threshold, we label the
BB as text; otherwise, we label it as noise.

—Rule 3: Area. Tesseract tends to misidentify speckles as text; fortunately, these areas are small relative to
normal text BBs. Accordingly, we label as noise all BBs in the lowest percentiles of the total area for the
document.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:12 • M. Christy et al.

Individual thresholds are optimized simultaneously with a manually labeled subset of the corpus (see
Section 4.1). The final filter is the conjunction of the three rules. BBs classified as text at this stage are used
in the next stages to extract column layout and estimate the average font size of each document.

Step 2: Column extraction. Although Tesseract can generally identify multiple columns on a page, the nature of
our document corpus presents challenges. Narrow gutters between columns, and the presence of noise, vertical
lines, or decorative elements in the gutters, cause Tesseract to misidentify columns and disarrange the reading
order of a document that it otherwise may have transcribed accurately. This is especially true of the page images
from EEBO, which typically contains two facing pages in each image. When the internal margins of those pages
are missing, narrow, noisy, or dark, the text is typically read as one large page, destroying the proper reading
order of two pages of text.

For this reason, the second step in the denoising process consists of dividing each image into its constituent
pages and columns so that each can be processed individually. First, we identify the leftmost and rightmost text
BB from the prefiltering stage; these coordinates define the text boundaries of the image. Then, we perform
column segmentation by analyzing the distribution of BBs over the horizontal axis; the dominant troughs in this
distribution define the column boundaries. To compute this distribution of BBs, we divide the horizontal axis
with 1,000 evenly spaced points. At each point, we trace rays from the top margin to the bottom margin with
slopes in the range 90◦ ± 3◦in increments of 0.2◦, then calculate the number of intersecting BBs for each ray. At
each point, we then identify the ray with the fewest intersections, and that becomes the value of the distribution
at that point. Since images tend to have a large number of spurious BBs at the margins, any BBs in the top and
bottom 20% are discarded. The overall process is illustrated in Figure 3(b).

Step 3: Local iterative relabeling. After each page has been split into columns, we apply an iterative relabeling
algorithm to the BBs of each column. The rationale behind this final step is that BBs surrounded by text are more
likely to contain text than those surrounded by noise. Accordingly, for each of the four vertices of every BB, we
find its nearest neighbors. Then, we calculate a weighted score, S , based on the label of each neighbor penalized
by its distance:

S (b) =

∑P
k=1wkLk∑P

k=1wk

, withwk =
1

dist (b,k)
, (1)

where b is the index of the BB, N is the number of BBs within distance Dmax from the vertices of b, and P is
the maximum number of nearest neighbors considered (P ≤ N). Lk is the predicted label (0: noise; 1: text) for
the k-th nearest neighbor, initially taken from the prefiltering step. The distance Dmax limits the search area
for nearest neighbors, preventing text BBs that are far from b to be considered in the computation. The distance
Dmax is computed relative toHmed , the median height of text BBs found in the prefiltering stage, plus a tolerance
defined by HIQR , their interquartile range; both statistics are computed for each individual column in the image:

Dmax = Hmed + α × HIQR , (2)

whereα defines the tolerance; the larger its value, the more distant neighbors that are allowed in the computation
of S of Equation (1). In our implementation, the value of α is optimized to minimize the mean square error
between S and the ground-truth label for all BBs in a training set.

The iterative process starts by initializing BB labels with those from the prefiltering stage. From these labels,
an initial score S can be computed for each BB. This score is then combined with six additional features and
passed as an input to a multilayer perceptron (MLP) previously trained to classify BBs as either text or noise.
The additional features include those used in prefiltering (COCR , H/W ,A) and the BB position relative to the
document margins, and its height normalized to Hmed and HIQR . The resulting labels are used to recompute S ,
and the process is repeated until convergence (i.e., labels no longer change from one iteration to the next).

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:13

Table 1. Datasets Used for Training and
Validation Purposes

Dataset Images (#) Text/Nontext (%) BBs (#)
1 39 69/31 14,705
2 34 71/29 15,896
3 86 66/34 41,765

Fig. 4. Probability density function of the three BB features, computed on Dataset 1. Reprinted with permission from “Au-
tomatic assessment of OCR quality in historical documents,” A. Gupta et al., Proc. 29th AAAI Conf. on Artificial Intelligence
(AAAI 2015), pp. 1735-1741. Copyright © 2015, Association for the Advancement of Artificial Intelligence.

4.1 Results

To test the denoising algorithm, we generated three separate datasets (Table 1), which were carefully selected to
represent the variety of documents in the eMOP collection. This included single-column, multipage, and multi-
column images, as well as images with artifacts due to ink bleed through, multiple skew angles, warping, printed
margins, printed column separators, and pictures. Each BB returned by Tesseract for each document image was
then manually labeled (i.e., text/noise) to generate ground-truth data, for a total of 72,366 BBs. As labeling cri-
teria, we considered as noise any BB that spanned more than two lines of text, as well as BBs around pictures,
small speckles, and printed margins. The remaining BBs were labeled as text. To guard against differences in
image size, the coordinates of BBs for each document were [0,1] normalized. Dataset 1 was used to optimize
thresholds in the prefiltering stage, whereas Dataset 2 was used to optimize parameters α and P in the local
iterative relabeling stage. Dataset 3 was used to cross validate the MLP and evaluate overall performance.

Figure 4 shows the distribution of features for noise and text BBs in the documents from Dataset 1. The distri-
bution of normalized areas in Figure 4(a) indicates that noise BBs tend to be smaller than text BBs, following our
observations that Tesseract has a tendency to generate small spurious BBs whenever speckle noise is present in
the image. Shown in Figure 4(b), the distribution of OCR word confidence values for noise BBs is multimodal,
with peaks near the extrema (0,1), whereas for text BBs it is normally distributed with a peak around 65% con-
fidence. Finally, the distribution of H/W ratios in Figure 4(c) shows clear differences between the two types of
BBs, with text generally having a much lower H/W ratio, as could be anticipated.

To optimize the threshold values for the three rules in the prefiltering stage, we performed a receiver-
operating-characteristic (ROC) analysis of the binary classification problem on Dataset 1. Namely, we performed
exhaustive search for the word confidence (two thresholds), height-to-width ratio, and area thresholds (a 4D
search space) to find the operating point with maximum F1 score on the precision-recall curve. The derived
rules were

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:14 • M. Christy et al.

Fig. 5. (a) BB classification rate before and after local iterative relabeling. (b) Number of iterations required for convergence.
(c) Comparison between MLPs and two additional classification methods. Parts (a) and (b) are reprinted with permission
from “Automatic assessment of OCR quality in historical documents,” A. Gupta et al., Proc. 29th AAAI Conf. on Artificial
Intelligence (AAAI 2015), pp. 1735-1741. Copyright © 2015, Association for the Advancement of Artificial Intelligence.

—Rule 1: If 0 < COCR < 0.95, then TEXT,
—Rule 2: If H/W < 2, then TEXT,
—Rule 3: If A > 1st percentile, then TEXT,

which, when used as a conjunction, yield an F1 score of 0.93 (0.94 precision; 0.91 recall). Thus, prefiltering can
identify a significant number of noisy BBs, but it also mislabels a large proportion (9%) of text BBs in the doc-
uments. This is largely due to the fact that it does not consider information local to each BB, a problem that is
handled by the local iterative relabeling step.

The MLP for the iterative process consisted of a hidden layer with eight tangent-sigmoidal neurons and two
output neurons (i.e., one per class) with soft-max activation function to allow MLP outputs to be interpreted
as probabilities. The number of hidden units (NH = 8) was optimized through threefold cross validation over
Dataset 3 with the F1 score as the objective function. Parameter P in Equation (1) (the maximum number of
neighbors) was set to 84 (21 per vertex), and parameter α in Equation (2) was set to 10. These optimal values were
obtained by minimizing the mean square error between S and the ground-truth label for all BBs in Dataset 2. We
also performed threefold cross validation over Dataset 3 to compare model performance before and after iterative
relabeling. Results are summarized in Figure 5(a); precision, recall, and the F1 score improve when compared
to prefiltering results on Dataset 3, with the largest gains obtained for recall (from 0.89 to 0.96). Figure 5(b)
summarizes the convergence rate; in 95% of the cases, the algorithm converges within three iterations. In a final
step, we compared the MLP against two alternative classification methods: logistic regression (LR) and random
forests (RF). Results are summarized in Figure 5(c); an RF with 150 trees gave the best cross validation result
and was used here. The MLP outperforms LR, which indicates that its additional model complexity is beneficial.
More interestingly, the MLP provides similar performance as the RF while using a much simpler model (one
hidden layer with eight neurons vs. 150 trees for the RF), which is important considering that the model had to
be deployed in production. Thus, the remaining results in this manuscript are based on the MLP model.

Figure 6 shows a document overlaid with the BBs returned by Tesseract. The fill color (green vs. red) repre-
sents the MLP prediction (text vs. noise, respectively), with higher color saturation denoting higher confidence.
Arrows 1 and 2 illustrate two cases for which prediction was correct but the MLP had low confidence, hence the
gray tone. Arrow 3 points to a BB that covers graphics and a decorative drop cap, neither of which is likely to
lead to a good OCR transcription. Finally, arrow 4 points to a BB that contains two lines of text; as such, the OCR
transcriptions are likely to contain garbage.

5 PREDICTING THE QUALITY OF OCR TRANSCRIPTIONS

Thanks to the Text Creation Partnership (TCP), we had approximately 1.8 million pages of ground truth from
about 46,000 documents against which we could measure the accuracy of our workflow using Juxta-CL. However,
even that impressive number amounts to only 4% of our total page images. In addition, the TCP’s efforts have

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:15

Fig. 6. Iterative relabeling results for the image in Figure 3. Color denotes MLP confidence: the more saturated, the higher
the confidence. Red: noise; green: text. Reprinted with permission from “Automatic assessment of OCR quality in historical
documents,” A. Gupta et al., Proc. 29th AAAI Conf. on Artificial Intelligence (AAAI 2015), pp. 1735-1741. Copyright © 2015,
Association for the Advancement of Artificial Intelligence.

historically been focused on EEBO, amounting to 82% of our ground truth. Our ground truth then accounted for
about 25% of the entire EEBO collection but less than 1% of the ECCO collection. In general, however, the page
image quality of the ECCO collection was much better as a whole than that of the EEBO collection, minimizing
that skew somewhat. But we still did not have a large enough sample set of ECCO ground truth upon which to
project a true appraisal of our overall accuracy with that collection. We needed a way to estimate the accuracy
of our OCR transcriptions for pages for which we did not have ground truth.

Fortunately, and as shown in the previous section, our denoising algorithm can label BBs as text or noise with
remarkable accuracy. This suggested that it may be used to estimate the overall quality of each document. Low-
quality documents tend to produce a large number of spurious BBs, whereas high-quality documents produce
mostly text BBs. Thus, the proportion of noise BBs returned by the OCR engine tends to be representative of the
document’s quality:

BBnoise = # noise BBs/# BBs . (3)

We evaluated this quality measure on a dataset containing 6,775 documents from EEBO that had ground truth. Re-
sults in Figure 7(a) show a strong negative correlation (−0.704;p � 0.001) between the proposed noise measure
(BBnoise) and the Jaro-Winkler similarity (s JW). Thus, as the proportion of noise BBs in a document increases,
differences between OCR and manual transcriptions also increase. The significance of this result is that s JW

cannot be computed in practice since it requires the manual transcription, whereas BBnoise can be computed
directly from the hOCR output. As such, it may be used to automatically triage documents of poor quality and
focus computational resources on those whose quality is more likely to generate good OCR transcriptions. In
a final step, we tested whether our algorithm could be used to improve the overall OCR performance. For this
purpose, we ran the algorithm on the previous dataset (6,775 documents), removed any BBs labeled as noise,
and computed s JW between the resulting transcription and the manual transcription. Results are summarized
in Figure 7(b). In 85.4% of the documents, the algorithm improved S JW (average: + 6.3%), whereas in 10.6% of
the documents, it led to a decrease (average: –3.0%). Last, we analyzed the impact of local iterative relabeling

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:16 • M. Christy et al.

Fig. 7. (a) BB-based quality measure (BB_noise) vs. the Jaro-Winkler similarity (s_JW) for 6,775 documents. (b) s_JW be-
fore and after iterative relabeling; for most documents (those above the diagonal line), iterative relabeling improved s_JW.
(c) Average change in Jaro-Winkler similarity as a function of document quality (BBnoise). The blue line represents the av-
erage improvement as a function of the amount of noise in the document, whereas the shaded areas represent variability
in the improvement across documents. Reprinted with permission from “Automatic assessment of OCR quality in historical
documents,” A. Gupta et al., Proc. 29th AAAI Conf. on Artificial Intelligence (AAAI 2015), pp. 1735-1741. Copyright © 2015,
Association for the Advancement of Artificial Intelligence.

step of denoising algorithm as a function of document quality; results are shown in Figure 7(c). Regardless of
document quality (BBnoise), local iterative relabeling increases the Jaro-Winkler similarity. These improvements
are modest for high-quality documents (i.e., low BBnoise) but become quite significant (up to 0.25) for documents
of poor quality,23 where they are most needed.

6 TYPEFACE IDENTIFICATION

Historical documents in the hand-press period have irregular fonts and show large variations within a single
font class since the early printing processes had not been standardized. Blackletter (or Gothic) and roman font
classes are the two main font types used in early modern printing, but these two font classes have evolved into
multiple subclasses since the first printed book. Knowing the font type and characteristics for each document
in a collection can substantially improve the performance of OCR systems [24, 25]. In large collections such
as ours, however, hand tagging each individual document, page, and text region according to its font becomes
prohibitive.

To address this problem, we developed a typeface identification algorithm to automatically tag individual
documents within a large collection according to their fonts. Font identification is best formulated as a supervised
classification problem, and as such it requires labeled data. Classification models work best when they have
sufficient labeled data that represent the diversity of exemplars in the corpus. However, in our case, obtaining
large amounts of labeled data from a corpus of 45 million page images, with varied font types, was a daunting task.
For this reason, our typeface identification algorithm operates in an active learning fashion to optimize the hand
labeling process. Active learning is a mixed-initiative paradigm where a machine learning (ML) algorithm and a
human work together during model building: the ML algorithm suggests a few high-value unlabeled exemplars;
these are passed to the human to obtain labels; the model is adapted based on these newly labeled exemplars;
and the process is repeated until the model converges.

Figure 8(a) illustrates the approach. The process starts by selecting a set of seed training images, which are
then passed through the OCR engine and the denoising algorithm described in Section 4. Once text BBs have been
identified, they undergo an image preprocessing step that normalizes them by size (to a height of 400 pixels),

23For very noisy documents (i.e., BBnoise = [0.8, 1)), the average improvement is around 0.12 (see the blue line in Figure 7(c)) but can be

as high as 0.35 (see the upper boundary of the shaded region).

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:17

Fig. 8. (a) Steps for active learning–based typeface identification. (b) Calculating mean and IQR character width. (c) Results
from the Hough transform; green line segments indicate the detected angled straight lines.

filters out salt-and-pepper noise [26], and removes skew [27]. Preprocessed word images are then passed to
a feature extraction module. The resulting feature vectors (from all word images in a page) are then vector
quantized and combined into a bag-of-words feature (BoF) representation for the page. These BoFs become the
input to the font classifier. Starting with a small set of seed training images, we iteratively train the font classifier
and then use it to select the most informative (yet unlabeled) documents for the human analyst to label next. This
training-labeling process (active learning) is repeated until a performance criterion (e.g., a target precision/recall
rate) is met.

We extract three kinds of features to capture font information at the word-image level:

—Average and IQR stroke width. We characterize the stroke width by its trimmed mean and interquartile
range (IQR) on each word image. Namely, we scan 10% of the rows (41 rows; middle row ± 20) of each
preprocessed word image, and locate transitions from background to foreground, and transitions from
foreground to background—see the green and red points in Figure 8(b), respectively. Difference in their
x-coordinates serves as an estimate of the stroke width. Since each row may have multiple such stroke
widths, we store the count Ci for each row and then compute the maximum Cmax . Next, we select rows
where Ci = Cmax and calculate the trimmed mean and IQR over their respective stroke widths. Using
these robust statistics and limiting the computation to rows with Ci = Cmax provides further immunity
to outliers.

—Slant line density. We estimate the number of slanted lines by applying the Canny edge detector to each
word image, followed by the Hough transform [28]. We then compute the number of lines with slope in
the range 45◦ ± 5◦ and −45◦ ± 5◦, then divide it by the number of recognized characters in the word,
which is available from the output of the OCR engine. This results in an estimate of the slant line density
for a word image (see Figure 8(c)).

—Zernike moments. Finally, we capture the visual appearance of each word using Zernike moments (ZMs)
[29]. ZMs are the projection of the image onto an orthogonal basis known as the Zernike polynomials
(ZPs). Following Tahmasbi et al. [30], the ZMs for an image of size N × N can be computed as

Zm,n =
n + 1

λN

N−1∑
c=0

N−1∑
r=0

I (c, r)V ∗nm (c, r) , (4a)

where λN is a normalization factor, I (c, r) is the binary image at pixel position (column, row), andV ∗nm is
the ZP of orderm,n, which can be computed as

V ∗nm (ρcr ,θcr) = Rnm (ρcr) e−jmθcr , (4b)

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:18 • M. Christy et al.

and ρcr and θcr are the distance and phase at pixel (c,r), respectively:

ρcr =

√
(2c − N + 1)2 + (2r − N + 1)2

N
, θcr = tan−1

(N − 1 − 2r

2c − N + 1

)
. (4c)

Finally, Rnm is a radial polynomial defined as

Rnm (ρ) =

(n−|m |)/2∑
s=0

(−1)s (n − s)!

s! (((n + |m |) /2) − s)! (((n − |m |) /2) − s)!
ρn−2s (4d)

Following Tahmasbi et al. [30], we compute24 the magnitude of first six ZMs along with their transfor-
mations (a total of 15 features).

BoFs [32] are usually extracted using small patches in the image, which in our case correspond to word images.
To obtain a BoF for each page, we apply k-means (k=20) to the distribution of local features (across all training
documents), vector quantize each word image, and compute the number of words assigned to each cluster. To
achieve word-count invariance, we normalize each BoF by the total number of words on the page.

6.1 Active Learning for Font Identification

The active learning component comprises two parts: a base classifier and a sampling engine. The base classifier
is trained on a small amount of labeled data (L), and the sampling engine uses it to select a batch of the most
informative instances (X) from an unlabeled set (U) for labeling. A human annotator labels all instances in X ,
and these are added to L to retrain the classifier. The entire process of training and sampling is repeated until
convergence.

6.1.1 Base Classifier. We use a modified label-propagation model proposed by Kobayashi et al. [33] known as
logistic label propagation (LLP). In label propagation (LP), all training instances (labeled+ unlabeled) are treated
as nodes in a fully connected graph, and labels are propagated to unlabeled data points according to their prox-
imity to the labeled data:

Si j = exp
(
−��
�
|Xi − X j |��

�

2
/σ 2
)
, (5)

where Xi and X j are the features vectors for document i and j, respectively, and σ is the bandwidth hyperpa-
rameter. A major drawback of LP is its computational complexity during recall; LP must reconstruct the whole
similarity matrix for new instances and then re-estimate their class posteriors to predict their labels. In contrast,
LLP trains a logistic classifier in a semisupervised fashion by adding to the logistic cost function a cost derived
from the LP model, which shifts the decision boundary to account for the distribution of unlabeled data. We
compare LLP against LR in Section 6.2.

6.1.2 Active Sampling. The performance of active learning depends heavily on the choice of sampling strategy
(known as a query function) that selects the most informative instances for labeling. For this reason, our query
function considers three separate criteria:

—Uncertainty. Following Settles [34], unlabeled instances are selected according to the classifier’s uncer-
tainty about their labels. In particular, we compute uncertainty for an unlabeled data point Uk as the
entropy of its class-posterior distribution p(y|Uk ,L):

H (y |Uk ,L) = −
∑

y

p (y |Uk ,L) logp (y |Uk ,L), (6)

where L is the labeled data and y is the label, which ranges over all possible labelings of Uk .

24For this purpose, we use a Matlab implementation of ZMs developed by Wolf et al. [31] (http://liris.cnrs.fr/christian.wolf/software/zernike/).

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

http://liris.cnrs.fr/christian.wolf/software/zernike/

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:19

Fig. 9. (a) Cross-validated accuracy for classifiers trained using 18 features (ALL), ZM, and SLD-CW. (b) Principal compo-
nents analysis of the dataset using page-level features (BoFs); each point represents a document.

—Dissimilarity to the labeled data. To promote exploration, we also consider instances that lie in unex-
plored regions of feature space. For each unlabeled instance (Uk), we find the five most similar labeled
instances (Ln) based on LLP’s similarity matrix (Snk). Samples with highest dissimilarity Dk are selected
for querying:

Dk =
1

5

5∑
n=1

1 − Snk . (7)

—Diversity. Each iteration, our sampling engine selects a batch of 20 unlabeled instances. To prevent in-
stances within a batch from being too similar to each other, we incorporate a diversity metric that con-
structs the batch X as follows:

(1) Initialize X with the unlabeled instance that has the largest score: H (y |Uk) + Dk .
(2) For each remaining unlabeled instance (Uk), calculate its diversity factor (D ′k) as

D ′k = min
n

(1 − Snk) , (8)

where Snk is the similarity between Uk and the nth sample already in X (see Equation (7)).
(3) Select sample Uk with the largest combined score (H (y |Uk) + Dk + D ′

k
), and add it to X .

(4) Repeat steps (2) and (3) until 20 unlabeled instances have been selected.

6.2 Results

We devised two experiments to evaluate our feature set and determine the best active learning query function.
In the first experiment, we examined whether the proposed features could discriminate between blackletter and
roman fonts at the word level. In the second experiment, we evaluated the complete system using six possible
active sampling strategies derived from combinations of three query criteria described in the previous section. For
these experiments, we created a dataset consisting of 3,272 document images from the ECCO/EEBO databases:
1005 printed in blackletter, 1,768 in roman, and 498 with text in both fonts (mixed). Each of these documents
were hand labeled by domain experts on the eMOP team.

6.2.1 Evaluating Word-Image Features. To compare the discriminatory power of the different word-level fea-
ture sets, we randomly selected 500 blackletter documents and 500 roman documents and extracted the 18 fea-
tures described at the start of this section. We then trained an LR classifier to predict the class label for each
word. The threshold for the classifier output was selected by maximizing the accuracy through fivefold cross
validation. Results are summarized in Figure 9(a). The slant angle density and character width (SLD-CW) fea-
ture set achieves 58% classification rate, whereas the ZM feature set achieves 81%. When the two feature sets are

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:20 • M. Christy et al.

Fig. 10. (a, b) Learning curves (a) and normalized AUC (b) for different sampling techniques. The black line in (b) denotes
random sampling. (c) Performance of the entropy+ diversity strategy with LLP and LR.

combined (ALL), classification performance improves modestly to 84%. These results indicate that all extracted
features are important for font identification and that they provide high between-class separability—even at the
word level.

6.3 Evaluating the Active Learning System

To evaluate the overall system, we randomly selected 600 documents (200 per class) as a test set and used the
remaining 2,672 documents for training. From these, we randomly selected 3 labeled documents (one per class)
as a seed set (X) to train the LLP font classifier; the remaining 2,669 documents became the unlabeled set (U).

After each step of training, the active learner selected a batch with the 20 most informative documents in
U (based on the scoring function) and queried their labels from an oracle25 that played the role of the human
labeler. These newly labeled documents were added to the training set L, the font classifier was retrained, and
its performance was tested on the 600 instances in the test set. We repeated this process until all unlabeled data
was consumed, recording the size of the labeled dataset and classifier accuracy at each step. For comparison, we
included a baseline system that iteratively selected a random set of 20 documents. For evaluation purposes, the
LLP bandwidth parameter was set to 300. Each experiment (active selection and random selection) was repeated
20 times with a new set of random seeds to get a stable performance estimate.

To ascertain the relative merit and degree of complementarity of the three active selection criteria, we report
performance for each of them in isolation26 and for each of their linear combinations:

S1 (k) = H (y |Uk ,L)
S2 (k) = Dk

S3 (k) = H (y |Uk ,L) + Dk

S4 (k) = Dk + D ′
k

S5 (k) = H (y |Uk ,L) + D ′
k

S6 (k) = H (y |Uk ,L) + D ′
k
+ Dk

where H (y |Uk ,L) is the uncertainty measure, D ′
k

is the diversity factor, and Dk is the dissimilarity measure.
Learning curves for these scoring functions and the baseline random selection are shown in Figure 10(a).

The best performer is S5 (uncertainty+ diversity) and requires 523 labeled samples (17%) to achieve a maximum
average test accuracy of 89%. The uncertainty criterion alone (S1) also performs well, achieving a maximum test
accuracy of 88% using 503 labeled samples.

25The oracle in this case was the training dataset itself, which had been fully labeled in advance.
26We do not consider diversity in isolation because its primary use is to aid other sampling techniques to pick diverse unlabeled instances.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:21

In a final analysis, we calculated the area under the curve (AUC) of each learning curve as a scalar performance
measure for each active sampling approach. Results are summarized in Figure 10(b). Based on the AUC values,
the uncertainty criterion performs marginally better than the sampling based on uncertainty+ diversity. The
remaining sampling techniques, all of which use dissimilarity, perform notably worse. This may be attributed
to the characteristics of our dataset. As shown in Figure 9(b), the distribution of BoFs reveals a good degree of
separability between roman and blackletter fonts, with some overlap with the mixed class. This arrangement
of data makes exploration less useful because most of the information is captured by instances at the class
boundaries. As a result, active sampling strategies that involve exploration need more labeled data to reach a
desired accuracy compared to a more exploitative technique that samples at the class boundaries.

6.3.1 Choice of Classifier: Supervised Versus Semisupervised. We compared LLP against LR (supervised) as an
alternative form of classification. For this purpose, we followed the same experimental procedure as described
earlier, except the LR classifier did not use any unlabeled data during training. With LR, the highest validation
accuracy (84%) is also achieved when using the entropy+ diversity criterion, which requires 23% (723 images) of
labeled data (results not shown). Comparing the entropy+ diversity strategy for both classifiers (see Figure 10(c)),
shows that semisupervised learning achieves higher accuracy with a significantly reduced number of labeled
examples. Namely, the LLP classifier achieves 5% better validation accuracy using 27% less labeled data (200
examples) than the LR classifier.

7 DISCUSSION

A goal of eMOP was to determine whether using early modern fonts to train open-source OCR engines would
yield better results than training with modern fonts. To fight against the rise of a “dark archive” and the “dig-
ital dark age,” we chose an initial dataset of the ECCO and EEBO collections (45 million page images) of the
first printed books in English—a dataset, curated by ProQuest and Gale, that early modern scholars across the
globe use with regularity. Early modern scholars and librarians have lauded collections digitized by Readex,
Adam Matthews Digital, ProQuest, and Gale (ECCO, EEBO, and other large collections) for providing “full-text
searching” and hence “providing unprecedented access” to key historical documents [35]. The quality of the OCR
means, however, that full-text searching is limited, and access to our past cultural heritage is much more limited
than it seems.

To date, providing usable transcriptions has required significant effort and expense. In ECCO—a dataset of
182,000 books—machine-generated text runs behind search mechanisms. Scholars conduct research on this text,
which was generated by Prime Recognition, who ran six of the top commercial OCR engines on the document
images and then used voting algorithms to determine the best results. By our calculations, these transcriptions
are 89% correct,27 whereas our results using eMOP are close to 86% correct using only one OCR engine plus
denoising algorithms. Thus, eMOP is significant for having created an OCR workflow that can save significant
amounts of time and money by achieving similar correctness rates in an open-source environment.

The worst documents in these collections have correctness rates so low that full-text searching is not possible.
To test the performance of eMOP on these difficult cases, our team worked with Readex Newsprint to select a
small sample set of documents containing problems that make OCR difficult such as skewing, uneven inking,
uneven baseline, and image noise created by print bleed through from the back side of the page—the overleaf; 37
documents were selected (30 chosen by Readex and 7 by the eMOP team), comprising 2,120 page images. eMOP
correctly identified 71% of the pages, whereas Readex and Gale identified 64%. These results suggest that the
eMOP OCR workflow performs particularly well when page images are poor, showing the strengths of applying
denoising and typeface identification algorithms.

27Prime Recognition reports a 95% correct OCR figure for their documents after 1721, with a different methodology. To allow comparison to

eMOP, we have used our own computations here.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:22 • M. Christy et al.

Over the course of the project, we learned a number of valuable lessons, summarized here:

—Dealing with page images based on their noise characteristics. We had to reconceptualize what kinds of
triage are required after OCR’ing historical documents. In the original grant, the eMOP triage system
was designed to identify issues in OCR output and then automatically analyze them for porting to an
appropriate correction tool based on issue identification. Once development was under way, we found
that the triage system was actually needed to select documents for image preprocessing and rerunning.
This led to the development of ML mechanisms to identify large amounts of noise based on patterns in
the OCR output. The denoising algorithm also provides several valuable clues: (1) which pages images
contain pictures that can trip up an OCR run, causing the engine to time out before it finishes “reading”
the page; (2) which page images present layout problems such as columns; (3) which page images need
to be preprocessed to remove warping and skew; and (4) which page images will never be readable and
need to be rescanned by libraries.

—How to identify fonts without metadata information. For more than 6 months, we were delayed by unex-
pected complications related to data collection and wrangling. Our various partners had diverse metadata
and data formats. We now have what we believe to be the most complete and correct database of early
modern documents and metadata. This eMOP database has been mined to produce results such as the
Imprint Database, a record of every imprint line from books printed between 1,473 and 1,800 with accom-
panying record identifiers from various bibliographic resources.28 We had hoped to have this database
available at the beginning of eMOP, to use for font identification, rather than at its end: research still
needs to be conducted to determine the typeface’s associated with each printer named in the database.
This issue motivated the development of the typeface identification algorithm (Section 2.2) that allows
us to process documents without having any metadata information about printers and hence fonts. The
algorithm identifies fonts so that we can rerun these documents with better training sets. We have already
tested this process and found significant improvements (results not included).

—How to train the Tesseract OCR engine for nonstandard fonts. While dealing with data wrangling, our team
was also forced to deconstruct our misconceptions about font training and OCR engines. Whereas OCR
engines such as Gamera train on many instances of a specific character, we discovered that Tesseract
training requires “ideal” font characters for optimal training, and thus we developed a font training cre-
ation tool (Franken+) to semiautomate the Tesseract font training process.29 It may be that IBM’s Concert
tool did not significantly improve ABBYY Finereader results for the same reason.

Defending against the danger of the dark archive is not a question of open access to digitized materials but a
question of how access to these materials can be responsibly structured, carried out, and sustained. From collec-
tions of digitized page images that require subscriptions (EEBO, ECCO) to open access collections of digitized
materials (e.g., the Digital Walters30), scholars and technologists must come together and explore open-source
solutions that will make these materials available for scholarly use and analysis. It is not feasible for every col-
lection of digitized materials to organize a massive effort to manually transcribe their holdings, nor is it always
possible for institutions to afford to hire companies to mechanically transcribe their holdings. Therefore, the
eMOP team partnered with institutions and groups that had employed both of these methods (manual and me-
chanical transcription) to develop a solution that would combine both: experts would identify early modern fonts,

28http://emop.tamu.edu/outcomes/github/ImprintDB.
29http://emop.tamu.edu/outcomes/Franken-Plus.
30The Digital Walters is a project designed by the Walters Art Museum in Baltimore, Maryland, and funded by the National Endowment for

the Humanities. It contains high-resolution archival images of more than 850 illuminated manuscripts and many of the first printed books

(http://www.thedigitalwalters.org).

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

http://emop.tamu.edu/outcomes/github/ImprintDB
http://emop.tamu.edu/outcomes/Franken-Plus
http://www.thedigitalwalters.org

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:23

the OCR engines would be trained to “read” them, and then OCR output would be ported into crowd-sourced
correction tools for scholars to perfect transcriptions.

It is not satisfying for current scholars to rely on the “dirty OCR” that runs behind many of these early mod-
ern databases and collections. Learning from and in collaboration with our eMOP partners, collaborators, and
predecessors, our project team will be sustaining development into OCR technologies and correction tools. Im-
mediately after completing the OCR of EEBO and ECCO, eMOP prepared to load the resulting mechanically
transcribed texts into various tools that would allow the community to correct any remaining dirty OCR.

—TypeWright. In March 2016, we made almost all of the EEBO texts mechanically transcribed through our
pipeline, available via 18thConnect’s TypeWright tool. TypeWright was designed to allow crowd-sourced
corrections for the dirty OCR running behind the 18th-century archive. Originally, TypeWright contained
only documents from ECCO in an attempt to enlist experts in the field of 18th-century studies to manually
correct the dirty OCR in transcriptions produced by Prime Recognition. eMOP, 18thConnect, and Type-
Wright are now offering the same opportunity to all early modern scholars. It is our hope that scholars
work together to ensure that the untranscribed and poorly OCRd documents (e.g., the 85,200 documents
so far not available as TCP-transcribed texts and therefore not searchable) can be fully searchable by
future generations of scholars. Importantly, our agreements with Gale-Cengage and ProQuest authorize
18thConnect to release the corrected transcription of a document to the scholar-user who corrects it in
TypeWright. This permits the scholarly community to not only improve the searchability of the corpus
but also use the corrected text directly in their scholarly endeavors.

—AWL Editor. Although still under development, the AWL Editor will be integrated with TypeWright in
18thConnect to allow users to identify, transcribe, and encode paratextual elements on a page. Originally
designed to allow users to fix incorrect line designations made by OCR engines (a function that is still
available in the codebase), the AWL Editor will allow users to transcribe and encode marginalia, page
headers, catch words, and glossed terms. The AWL mechanism will then save the coordinates of these
paratextual elements, which are often overlooked or misidentified by OCR engines. Because the AWL
Editor will be connected to TypeWright, scholars who transcribe paratextual elements will receive the
corrected text and paratext, thanks to our agreements with Gale and ProQuest.

—Anachronauts. Developed by a team of undergraduate computer science students at Texas A&M, Anachro-
nauts combines crowd-sourced correction of dirty OCR with gamification. The game entices users on
Facebook to both improve the early modern corpus and learn about early modern printing culture.
The game combines rewards with the historical context of the texts being corrected, as users take
on the role of an early modern “editor” in a printing house. As users “standardize” copy text by iden-
tifying the correct transcriptions for single words, they can earn game currency to maintain the printing
house’s facilities, buy new printing presses or expand their business, and show off their achievements on
the game leaderboard. Our next steps for the project will be to find permanent hosting space for the game
and then create a mechanism for reconnecting images/words from Anachronauts with the eMOP OCR
output automatically.

At present, we are pursuing two complementary directions of future work:

—Deploying more OCR engines. As noted, eMOP is significant for having created an OCR workflow that
can achieve close to the same correctness rates as were achieved by the company Prime Recognition
while using only one OCR engine compared to Prime Recognition’s six. However, we might be able to
outstrip the best OCR correctness rates for page images digitized from microfilm by adding OCR engines
to the workflow. In fall 2015, work began on “Reading the First Books: Multilingual, Early-Modern OCR
for Primeros Libros,” a project funded by the National Endowment for the Humanities and led by teams
at the University of Texas at Austin and Texas A&M. The 2-year First Books project will expand the

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

6:24 • M. Christy et al.

functionality of the Ocular OCR engine, originally developed by Taylor Berg-Kirkpatrick at the University
of California at Berkeley. First Books deals with a truly multilingual dataset, as it pulls documents from
the Primeros Libros project, a digital collection of the first books printed in Mexico before 1601, the
first to be printed in North America. Although both Primeros Libros and the eMOP dataset share the
challenges of early modern printing practices, the Primeros Libros collection contains documents written
in combinations of English, Spanish, and several indigenous Latin American languages, such as Nahuatl.
The eMOP team is currently working to incorporate Ocular into the eMOP dashboard and controller to
continue investigating early modern printing practices from Europe to the New World.

— Improving OCR accuracy. Both Ocular and Tesseract achieve good results, and we are in the process of
combining their outputs with that from a third OCR engine that will allow us to use voting schemes
to further reduce OCR errors. In addition, Google has recently shifted focus from Tesseract to an OCR
engine based on neural networks. Although this engine is not yet ready for open-source release, Google
provides an API that can be used for page images and will soon make available the early modern training
sets that they have developed for it.31

ACKNOWLEDGMENTS

eMOP would not have been possible without generous funding by the Andrew W. Mellon Foundation. Mem-
bers of the Texas A&M University Cushing Memorial Library and Archives gathered typeface samples and
created high-resolution page images for training the Tesseract OCR engine in early modern typefaces. The
Koninklijke Bibliotheek (National Library of the Netherlands) provided invaluable guidance and advice based on
previous and continuing work on the IMPACT and Europeana Collections projects. The Software Environment
for the Advancement of Scholarly Research (SEASR) at the University of Illinois Urbana-Champaign developed
the post-OCR portions of the eMOP workflow. The University of Massachusetts Amherst developed a ground-
truth comparison algorithm. The PRImA Research Lab at the University of Salford provided us support on their
Aletheia tool as we used it to develop training for Tesseract and created the AWL Editor based on this tool.
Performant Software Solutions did the ground work development of the eMOP dashboard and controller, and
created the Juxta-CL tool for ground-truth comparison. The Academy for Advanced Telecommunications and
Learning Technologies developed our system architecture and finalized the eMOP dashboard and controller code.
The TCP provided a measure of self-evaluation with their collection of hand-transcribed versions of more than
46,000 documents from our corpus to serve as ground truth. And none of it would have been possible without
the partnership of both Gale-Cengage Learning and ProQuest, who provided us with the page images, meta-
data, and any available previous OCR transcriptions for their ECCO and EEBO proprietary database products,
respectively.

REFERENCES
[1] E. Niggemann, J. D. Decker, and M. Lévy. 2011. The New Renaissance: Report of the “Comité des Sages.” Office of the European Union.

[2] L. Mandell. 2017. What can you do with ‘dirty OCR’? Digital literary history beyond the canon. Presented at Instant History, the Postwar

Digital Humanities and Their Legacies: A Day Conference.

[3] A. Gupta, R. Gutierrez-Osuna, M. Christy, C. Boris, A. Loretta, L. Grumbach, R. Furuta, and L. Mandell. 2015. Automatic assessment of

OCR quality in historical documents. In Proceedings of the 29th AAAI Conference on Artificial Intelligence (AAAI’15). 1735–1741.

[4] G. Crane. 1987. From the old to the new: Integrating hypertext into traditional scholarship. In Proceedings of the ACM Conference on

Hypertext (HYPERTEXT’87). 51–55.

[5] R. Smith. 1995. A simple and efficient skew detection algorithm via text row accumulation. In Proceedings of the 3rd International

Conference on Document Analysis and Recognition (ICDAR’95). 1145.

[6] R. Smith. 2007. An overview of the Tesseract OCR engine. In Proceedings of the 9th International Conference on Document Analysis and

Recognition (ICDAR’07).

[7] U. Reffle and C. Ringlstetter. 2013. Unsupervised profiling of OCRed historical documents. Pattern Recognition 46, 5, 1346–1357.

31Cloud Vision API: https://cloud.google.com/vision/.

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

https://cloud.google.com/vision/

Mass Digitization of Early Modern Texts With Optical Character Recognition • 6:25

[8] M. Reynaert. 2008. Non-interactive OCR post-correction for giga-scale digitization projects. In Proceedings of the 9th International

Conference on Computational Linguistics and Intelligent Text Processing. 617–630.

[9] B. Alex, C. Grover, E. Klein, and R. Tobin. 2012. Digitised historical text: Does it have to be mediOCRe? In Proceedings of KONVENS

2012 (LThist 2012 Workshop). 401–409.

[10] P. Ye and D. Doermann. 2013. Document image quality assessment: A brief survey. In Proceedings of the 2013 12th Conference on

Document Analysis and Recognition (ICDAR’13).

[11] R. D. Lins, S. Banergee, and M. Thielo. 2010. Automatically detecting and classifying noises in document images. In Proceedings of the

2010 ACM Symposium on Applied Computing (SAC’10). 33–39.

[12] N. Sandhya, R. Krishnan, and D. Babu. 2012. A language independent characterization of document image noise in historical scripts.

International Journal of Computer Applications 50, 11–18.

[13] A. Farahmand, A. Sarrafzadeh, and J. Shanbehzadeh. 2013. Document image noises and removal methods. In Proceedings of the Inter-

national Multiconference of Engineers and Computer Scientists.

[14] K. Ait-Mohand, L. Heutte, T. Paquet, and N. Ragot. 2010. Font adaptation of an HMM-based OCR system. In Proceedings of SPIE 7534:

Document Recognition and Retrieval XVII.

[15] D. Ghosh, T. Dube, and A. P. Shivaprasad. 2010. Script recognition—a review. IEEE Transactions on Pattern Analysis and Machine

Intelligence 32, 12, 2142–2161.

[16] R. Rani, R. Dhir, and G. S. Lehal. 2013. Script identification of pre-segmented multi-font characters and digits. In Proceedings of the 2013

12th International Conference on Document Analysis and Recognition (ICDAR’13). 1150–1154.

[17] G. Schohn and D. Cohn. 2000. Less is more: Active learning with support vector machines. In Proceedings of the International Conference

on Machine Learning. 839–846.

[18] Y. Fu, X. Zhu, and B. Li. 2013. A survey on instance selection for active learning. Knowledge and Information Systems 35, 249–283.

[19] M.-R. Bouguelia, Y. Belaïd, and A. Belaïd. 2013. A stream-based semi-supervised active learning approach for document classification.

In Proceedings of the International Conference on Document Analysis and Recognition. 611–615.

[20] G. B. Newby and C. Franks. 2003. Distributed proofreading. In Proceedings of the 3rd ACM/IEEE-CS Joint Conference on Digital Libraries.

[21] L. von Ahn. 2006. Games with a purpose. Computer 39, 6, 92–94.

[22] L. von Ahn and L. Dabbish. 2008. Designing games with a purpose. Communications of the ACM 51, 8, 58–67.

[23] L. von Ahn, B. Maurer, C. McMillen, D. Abraham, and M. Blum. 2008. reCAPTCHA: Human-based character recognition via Web

security measures. Science 321, 5895, 1465–1468.

[24] S. La Manna, A. Colia, and A. Sperduti. 1999. Optical font recognition for multi-font OCR and document processing. In Proceedings of

the 10th International Workshop on Database and Expert Systems Applications. 549–553.

[25] M. B. Imani, M. R. Keyvanpour, and R. Azmi. 2011. Semi-supervised Persian font recognition. Procedia Computer Science 3, 336–342.

[26] R. C. Gonzalez and R. E. Woods. 2007. Digital Image Processing (3rd ed.). Prentice Hall.

[27] E. Kavallieratou, N. Fakotakis, and G. Kokkinakis. 2002. Skew angle estimation for printed and handwritten documents using the

Wigner–Ville distribution. Image and Vision Computing 20, 813–824.

[28] J. Illingworth and J. Kittler. 1988. A survey of the Hough transform. Computer Vision, Graphics, and Image Processing 44, 1, 87–116.

[29] A. Khotanzad and Y. H. Hong. 1990. Invariant image recognition by Zernike moments. IEEE Transactions on Pattern Analysis and

Machine Intelligence 12, 5, 489–497.

[30] A. Tahmasbi, F. Saki, and S. B. Shokouhi. 2011. Classification of benign and malignant masses based on Zernike moments. Computers

in Biology and Medicine 41, 8, 726–735.

[31] C. Wolf, G. Taylor, and J.-M. Jolion. 2011. Learning Individual Human Activities From Short Binary Shape Sequences. Technical Report

LIRIS. Available at http://liris.cnrs.fr/Documents/Liris-5294.pdf.

[32] J. Sivic and A. Zisserman. 2003. Video google: A text retrieval approach to object matching in videos. In Proceedings of the 9th IEEE

International Conference on Computer Vision. 1470–1477.

[33] T. Kobayashi, K. Watanabe, and N. Otsu. 2012. Logistic label propagation. Pattern Recognition Letters 33, 5, 580–588.

[34] B. Settles. 2012. Active Learning: Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool.

[35] K. Black. 2004. Booklist/Reference Books Bulletin, November 1.

Received April 2016; revised February 2017; accepted March 2017

ACM Journal on Computing and Cultural Heritage, Vol. 11, No. 1, Article 6. Publication date: December 2017.

http://liris.cnrs.fr/Documents/Liris-5294.pdf

