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Abstract—This paper addresses a major weakness of traditional
heart-rate-variability (HRV) analysis for the purpose of moni-
toring stress: sensitivity to respiratory influences. To address this
issue, a linear system-identification model of the cardiorespiratory
system using commercial heart rate monitors and respiratory
sensors was constructed. Subtraction of respiratory driven fluc-
tuations in heart rate leads to a residual signal where the effects
of mental stress become more salient. We experimentally vali-
dated the effectiveness of this method on a binary discrimination
problem with two conditions: mental stress of subjects performing
cognitive tasks and a relaxation condition. In the process, we also
propose a normalization method that can be used to compen-
sate for ventilation differences between paced and spontaneous
breathing. Our results suggest that, by separating respiration
influences, the residual HRV has more discrimination power than
traditional HRV analysis for the purpose of monitoring mental
stress/load.

Index Terms—Heart rate variability, mental stress, respiratory
sinus arrhythmia, system identification, wearable sensors.

I. INTRODUCTION

A WEALTH of information about the state of the auto-
nomic nervous system (ANS) can be obtained from an

analysis of inter-beat intervals of the heart, commonly referred
to as heart-rate-variability (HRV). The power spectrum of HRV
shows a low-frequency band (LF: 0.04–0.15 Hz) reflecting sym-
pathetic contributions (i.e., related to the “fight-or-flight” or
stress response) and a high-frequency band (HF: 0.15–0.5 Hz)
that is dominated by parasympathetic activity, which occurs
when the body is at rest. For these reasons, the ratio of LF
to HF power has been widely used as an index of sympa-
thetic-to-parasympathetic balance [1] and of mental stress
and mental load [2]. Measurements of HRV are also robust,
relatively unobtrusive, and affordable with consumer-grade
heart rate monitors (HRM), which makes them suitable for
long-term ambulatory monitoring.

However, HRV can be influenced by factors other than mental
stress, and one of the most influential short-term factors is respi-
ration. For example, when a subject breathes slowly (i.e., below
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ten breaths per minute), both respiration and mental stress con-
tribute to LF energy in the HRV power spectrum. Thus, when
using HRV as a measure of stress it is critical to separate res-
piratory contributions to HRV from those that are due to the
psychological stressors of interest. Despite this fact, however,
respiratory influences are rarely considered in studies of HRV.

To address this issue, this paper proposes a method to de-
tect mental stress from HRV that takes into account respira-
tory influences. Our approach consists of first modeling the ef-
fects of breathing on HRV through an autoregressive moving
average model, and then subtracting respiratory-driven predic-
tions from the HRV signal. The result is a residual signal that
is dominated by activation in the sympathetic branch. In an ear-
lier paper presented at the 2010 IEEE Sensors Conference [3],
we established proof-of-concept for the proposed method using
an experimental protocol where subjects had to follow a paced
breathing signal. Here, we extend the method to consider spon-
taneous breathing, a necessary generalization for the method to
be useful in ambulatory studies. For this purpose, we also pro-
pose a normalization technique to compensate for differences in
lung volume between paced and spontaneous breathing.

This paper is organized as follows. Section II provides back-
ground on HRV analysis as a measure of autonomic cardiac
control, and reviews the literature on modeling of the cardio-
respiratory regulatory system. Section III describes the system-
identification approach we use to model and reduce respiratory
influences. Section IV describes the experimental protocol and
wearable sensor system that was used to validate the method,
while experimental results are provided in Section V, followed
by a discussion and conclusion in Section VI.

II. BACKGROUND

A. HRV as a Measure of Autonomic Cardiac Control

HRV analysis is a useful tool to assess cardiac autonomic
function. HRV is influenced by gender [4], long-term factors
such as aging and illness, and short-term factors such as mental
stress, respiration, and physical exercise [1], [2]. Because of
these properties, HRV has been employed in diverse areas
ranging from psychological studies to clinical risk assessments.

Long-term factors are those that affect HRV for more than
a month. As an example, HRV reduces with age due to loss of
elasticity in the cardiac muscles [5]. Altered long-term HRV
may also imply an increased risk of vascular failure, which
could lead to death [6]. HRV is also associated with several
forms of cardiac illnesses. Patients with coronary artery disease
who exhibit reduced HRV are at an increased risk for cardiac
mortality [7]. Myocardial infarction leads to decreased HRV
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at night because it reduces the body’s ability to activate vagal
dominance during sleep, which in turn is associated with higher
risk for cardiac failure [8]. Lower HRV can also be a sign of
autonomic dysregulation in the early stages of hypertension
[9]. Finally, HRV has been linked to several mental disorders.
As an example, depressed patients exhibit significantly lower
beat-to-beat intervals and HF power, indicating decreased
parasympathetic activity [10], and phobic anxiety, which can
cause sudden cardiac death, is characterized by decreased
HRV [11].

HRV is also influenced by mid-term factors, such as circadian
rhythms. As an example, Huikuri et al. [12] analyzed HRV over
periods of 24 h; their analysis showed a high variability before
subjects woke up (reflecting a high vagal tone) and low values
after the subjects were awake. In [13], Malpas and Purdie
observed that HRV rises again during sleep, and the absence
of these cycles in HRV can be an indication of cardiac failure.
Ischemic stroke patients are another group that does not display
these cycles due to cardiovascular autonomic dysregulation
[14]. In contrast, people undergoing heavy physical training
showed significantly more rhythm in parasympathetic activity
during both day and night [15]. Parasympathetic activity is
lower in NREM sleep than in REM sleep; an opposite trend is
seen in sympathetic activity [16].

Short-term factors such as respiration and mental stress also
have a heavy influence on HRV. Various forms of stressors (e.g.,
public speaking, mental arithmetic, or reaction-time tests) can
lead to increased sympathetic activity and decreased parasym-
pathetic activity [2]. As for emotion, anger leads to sympathetic
activation, whereas appreciation produces a shift in HRV power
spectrum towards the HF band; earlier studies [17] have also
suggested that positive emotions lead to alterations in HRV.
Physical activity is also a dominant confounding factor of HRV.
During exercise, the HF component reflects an increased respi-
ratory rate and the LF peak changes with the baroreceptor re-
flex [18]. In addition, exercise and passive tilt result in a short-
term increase of HRV, which is related to increased HF power
[19], [20].

Among the various factors that influence HRV, however,
breathing is the most dominant one; increased breathing in-
tervals result in increased inter-heartbeat intervals. At normal
breathing rates, the effect of respiration on HRV begins during
expiration and progresses slowly, though these influences
are not so clearly evident at faster breathing rates [21]. This
relationship between breathing and HRV is maximized at slow
breathing rates of around 0.1 Hz [22]. Thus, given that respira-
tion is one of most dominant factors influencing HRV, removing
its influence from HRV is likely to increase the prominence of
other factors.

B. Modeling of Cardiorespiratory Relationship

Computational modeling of the cardiorespiratory regulation
system has been widely used in studies of HRV. In their sem-
inal work [23], Saul and colleagues developed a transfer func-
tion model to explain the relationship between heart rate and
respiration in various body postures (i.e., supine and tilt). Their
results showed that the gain of the transfer function from respi-

ration to heart rate is larger for the LF band than for the HF band,
and that the gain is maximized at 0.1 Hz. To estimate parame-
ters of the transfer function between instantaneous lung volume
(ILV) and heart rate, Yana et al. [24] used a linear model where
current heart rate was expressed as a linear combination of past
ILV values; model coefficients were estimated by least squares.
Other authors have explored the use of arterial blood pressure
(ABP) as an additional input to the regulatory model [25], [26].
Although these multivariate cardiorespiratory models may be
able to explain the hemodynamic behavior of the heart, mea-
surement of ABP is invasive and therefore impractical in ambu-
latory settings.

HRV can be influenced by various breathing parameters such
as changes in the concentration of carbon dioxide, respiration
frequency, and ILV [27]. Among these parameters, however,
work by Pöyhönen et al. [27] has shown that respiratory fre-
quency is the most dominant contributor to HRV oscillations.
In their study, a decrease in respiration rate induced an increase
in the LF power of HRV in all subject groups, while changes in
other breathing parameters showed only partial influences in a
few subject groups. This result indicates that the change of res-
piration frequency is a more important influence in modulating
HRV than changes in tidal volume.

III. METHODS

A. Cardiorespiratory Model for Paced Respiration

We employed a special case of the autoregressive moving
average with exogenous inputs (ARMAX) model [28]. An
ARMAX model estimates the output of the system as a linear
combination of previous inputs, outputs, and errors

(1)

where , , and are the output, input, and error at time
, , , and are their respective predictor coefficients ,

parameters , , and are their corresponding model orders,
and is the delay before an input influences the output of the
system. In our proposed model, the system output is the
heart period, whereas the input is the respiration signal with
sample delay (exclude only current input).

If we regard the sum of all terms excluding input terms as a
residual , the model can be represented as

(2)

Thus, in our model, the current heart period is represented as a
weighted sum of inputs from past respiratory measurements and
a residual signal assumed to be related to stress. Model coeffi-
cients can be estimated through least squares as

(3)
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Equation (2) can be expressed in matrix form as

(4)

where is a tap delay of previous respiratory measurements
( ), which
leads to the pseudo-inverse solution

(5)

B. Normalized Model for Spontaneous Respiration

The above model assumes that ventilation is similar re-
gardless of the respiratory conditions (i.e., forced versus
spontaneous breathing). However, when subjects breathe fol-
lowing a pacing signal, the breathing volume tends to be larger
(higher power) than that under spontaneous breathing [29]. This
is problematic because modeling the cardiorespiratory transfer
function requires a broadband respiratory signal, which can
only be ensured if the subject follows a suitable pacing signal
[23]. Thus, the resulting transfer function tends to underesti-
mate HRV when the input is a spontaneous breathing signal.
To account for this difference, we introduce a scaling factor
in the ARMAX model (2), which results in

(6)

As before, we estimate ARMAX model coefficients through the
pseudo-inverse solution using data from
an initial calibration condition with paced breathing. Then, and
for a given respiratory trace under spontaneous breathing,
we estimate HRV as , and find the scale factors that
minimize the error

(7)

Currently, we employ an exhaustive search with a resolution of
to find the optimal scale factor.

IV. EXPERIMENTAL

A. Wearable Sensors

To collect heart period and respiration data, we used a
small and lightweight wearable sensor platform that we have
developed for ambulatory monitoring of mental stress. Shown
in Fig. 1, the system consists of a holster unit and a variety
of wireless physiological sensors known to be correlated with
mental stress. Namely, we capture HRV using a commercial
heart-rate-monitor (HRM) (Polar WearLink+; Polar Electro
Inc.), which our previous studies have shown provides compa-
rable results to those obtained with electrocardiograms [30].
In turn, respiration can be measured with either a piezoelectric
respiratory effort sensor (ultra piezo strap sensor 480420; Gere-
onics Inc.) or a pressure-based respiration sensor (SA9311M;
Thought Technology Ltd.). Each respiration sensor has its
advantages: the piezo sensor has a very low profile but is

Fig. 1. Prototype of the current wearable wireless sensor system.

sensitive to motion artifacts, whereas the pressure-based sensor
works well in the presence of body movements though at the
expense of a larger package. As shown in Fig. 1, both respi-
ration sensors are integrated with the HRM into a chest strap
for added comfort.1 Two additional wireless sensor modules
allow synchronized measurement of electrodermal activity (i.e.,
skin conductance) and electromyography. Sensors wirelessly
transmit to the holster unit using a low-power protocol (Sim-
pliciTI, Texas Instruments Inc.). Since the focus of our study is
the cardiorespiratory system, these two additional sensors were
not used here.

The holster unit contains an embedded Linux-centric plat-
form (Verdex Pro; Gumstix, Inc.) for data storage (mini
SD flash), real-time signal processing, and wireless net-
working. The holster unit also integrates a 3D accelerom-
eter (LIS344ALH; STMicroelectronics, Inc.), a GPS unit
(RXM-GPS-SR-B; Linx Technologies Inc.), a real-time clock
unit (DS1308; Dallas Semiconductor, Inc.), a heart rate receiver
module (Polar RMCM01; Polar Electro Inc.), and a wireless
transceiver (Ez430-RF2500; Texas Instruments Inc.).

B. Experimental Protocol

To validate the suggested linear model for the purposes of
detecting mental stress, we collected HRV and respiration data
from four subjects on two experimental conditions (relaxation
and mental stress), and an additional calibration phase from
which the coefficients of the transfer function was estimated.
Two different studies were performed: a study with paced res-
piration to test the basic ARMAX model in (2), and a second
study with spontaneous breathing to test the normalized model
in (6).

1) Paced Breathing: For the paced respiration study, subjects
were asked to breathe following a pacing sound with a fixed pe-
riod of 6.67 s for both experimental conditions (stress and re-
laxation); this pace ensured that respiratory influences affected
both the LF and the HF components of the HRV power spectra.
For the mental stress condition, subjects were asked to perform
a dual task [31] consisting of target tracking and memory search

1The studies reported here were based on the pressure-based sensor.
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Fig. 2. Computerized dual task test used to induce mental stress in the paced
breathing study. Subjects are asked to track a moving target by moving the
mouse. At the same time, subjects have to click the left-mouse button in response
to a target letter being displayed (three letters were given at the beginning of the
task).

tasks while following the pacing signal. For the breathing con-
dition, subjects were asked to rest quietly while following the
pacing signal.

During the dual-task test, subjects had to track a moving
target by moving a small square with the mouse. At the same
time, subjects also had to click the left-mouse button when one
of three target letters was displayed on the screen. Subjects were
asked to memorize these three target letters at the beginning of
the task. Distractor letters (i.e., other than three target letters)
were also randomly displayed; in the case of distractors, sub-
jects were asked not to click the mouse. Subjects were provided
instantaneous visual feedback about their overall performance
by means of three error bars on the screen. A screen shot of the
dual tracking test is shown in Fig. 2.

2) Spontaneous Breathing: For the spontaneous respiration
study, subjects were not provided a pacing sound and instead
were asked to breathe freely. For the mental stress condition,
subjects were asked to perform a Stroop color word test (CWT)
[31]; this ensured that our experimental findings were not con-
strained to a particular type of stressor. For the breathing con-
dition, subjects were asked to rest quietly.

During the CWT test, subjects were shown one of four words
(red, green, blue, or yellow) displayed with different ink colors,
and had to click on one of four buttons according to the ink
color (e.g., when presented with the word “red” in color blue,
subjects were to select the button labeled as “blue”). A screen
shot of the CWT is shown in Fig. 3. Each word was presented
for 1000 ms, after which subjects had an additional 300 ms to
respond; failure to respond within the total 1300 ms was treated
as the same error as selecting the wrong button. To make the
task more challenging, the test switched between two modes
(congruent and incongruent) every 30 s. In congruent mode, the
concept and the ink color were the same, e.g., the word “red”
was presented in red. In incongruent mode, the concept and ink
color were different, e.g., the word “blue” was presented in red.
Subjects were provided with instantaneous feedback on their
performance at the top of the screen.

3) Calibration: During an initial calibration phase, which
was common to both paced and spontaneous breathing studies,
subjects were asked to breathe following a sinusoidal pacing

Fig. 3. Computerized Stroop color word test used to induce mental stress in the
spontaneous breathing study. Subjects are asked to press one of the four panels
at the bottom of the screen according to the ink of the word being displayed (in
this case, the subject is to press the RED panel).

sound, with periods randomly drawn from a modified Poisson
process [23]; this ensured that breathing signal had a nearly flat
power spectrum over a broad range of respiratory frequencies.
In a Poisson process, the distribution function (8) describes the
probability of observing events within at given time interval
if the independent and identically distributed (i.i.d.) events occur
at an average rate

(8)

From this, the interval between two consecutive events can be
shown to follow the exponential density function (9):

(9)

In our case, we used a mean breathing period
to generate random breathing periods. As a mod-

ification to the traditional Poisson process, the minimum and
maximum interval limits were set to 2 and 10 s, respectively;
breathing periods outside this range were dropped to avoid
discomfort (which may also induce stress).

Each of the three conditions (relaxation, stress, and calibra-
tion) lasted 5 min, and each subject ( ) repeated the three
conditions on three consecutive days. Respiratory signals were
recorded at a sampling rate of 10 Hz. Then, RR tachograms and
respiratory signals were uniformly resampled to a common 4 Hz
rate, and band-pass filtered between 0.04 and 0.5 Hz to remove
the VLF (very low frequency) component. The experiment pro-
tocol was approved by the Institutional Review Board at Texas
A&M University, all subjects provided written informed con-
sent for the study.

V. RESULTS

A. Spectral Content in Cardio-Respiratory Signals

We conducted a preliminary experiment to illustrate the ex-
tent to which the HRV and respiratory signals share similar spec-
tral content. For this purpose, we collected data from three dif-
ferent respiration settings: shallow breathing with a fixed 3.5-s
period, deep breathing with a fixed 10-s period, and broadband
breathing. For each condition, HRV and respiration signals were
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Fig. 4. Power spectra for HRV and respiration with: (a) fixed breathing period
of 10 s, (b) fixed breathing period of 3.5 s, and (c) broadband breathing following
a Poisson process. Data corresponds to subject #1.

Fig. 5. Magnitudes of the transfer function for broadband breathing. Data cor-
responds to subject #1.

collected for 5 min. Subjects ( ) were asked to breathe fol-
lowing a pacing sound. In the two breathing conditions with a
fixed period, when HRV is dominated by respiration, the nor-
malized power spectrum of HRV shows high similarity to that
of the respiratory signal. Fig. 4(a) and (b) shows results for sub-
ject #1; all subjects showed a similar pattern between HRV and
respiration. These results indicate that, when breathing occurs
over a narrow frequency band, HRV and respiration peak at the
same frequency and have similar spectral content. When com-
pared to fixed breathing, results from the broadband breathing
condition [see Fig. 4(c)] show more noticeable differences be-
tween the two power spectra, though both signals display a peak
at the same frequencies; as before, this pattern was observed on
all subjects.

To gain further insight, we calculated the magnitude of the
transfer function from respiration to HRV using the broadband
respiratory data. Results are shown in Fig. 5 for one subject. The
transfer function displays a maximum at a breathing frequency
of 0.1 Hz, followed by a spectral slope from 0.1 to 0.4 Hz. This
result is consistent with those reported in [23], and indicates that
the HRV transfer function has higher gain in the LF band than in
the HF band. As a consequence, HRV can be heavily influenced
by respiration when breathing occurs within the LF band, which
limits its diagnostic value for mental stress unless respiratory
effects are accounted for.

B. Stress Detection With Paced Respiration

HRV spectra during the paced breathing study displayed a
dominant peak at 0.15 Hz [see Fig. 6(b)], which followed the

Fig. 6. Power spectrum of: (a) respiration signal (input), (b) HRV signal
(output), (c) prediction by MA model, and (d) residual signal following paced
breathing at 0.15 Hz. Data corresponds to subject #3.

respiration pacing signal [Fig. 6(a)]. These results indicate that,
on the basis of the HRV signal alone, it is quite challenging to
discriminate between the two experimental conditions (stress
versus relaxation). We then used the derived ARMAX model
to predict the HRV signal from the respective respiratory signal
for both stressed and relaxed conditions. Power spectra for
the predicted HRV signal and residual signal are shown in
Fig. 6(c) and (d), respectively. The residual signal for the stress
condition has more spectral power than that of the relaxed
condition, which supports our hypothesis that residual analysis
is more discriminatory than HRV analysis.

To confirm these findings, we compared the information con-
tent of the traditional HRV analysis and the residual analysis by
means of a pattern classifier. First, we split the data recordings
into 60-s windows with a 15-s shift, then extracted LF and HF
power using Welch’s method [32]. Each window was treated
as a different sample, resulting in 71, 67, 70, and 71 windows
for each subject, respectively (some windows had to be dis-
carded due to noisy measurements). We trained a quadratic clas-
sifier [33] for each subject using data from two days and tested
it on data from the remaining day; this process was repeated
three times per subject, one for each day of data collection. The
problem was setup as a binary classification problem, where
the goal was to discriminate the mental stress conditions from
the relaxation conditions. Classification results are summarized
in Fig. 7. In all four subjects, classification performance of the
residual signal outperformed that on HRV. In case of subjects 1
and 4, where HRV provides low classification rates, the residual
signal outperformed HRV analysis by 72% and 75%, respec-
tively. In the case of subjects 2 and 3, on which HRV tends to
work better, the residual signal still improved classification per-
formance by 11% and 22%, respectively. In addition, classifica-
tion performance on the residual signal had significantly lower
standard error within and between subjects.
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Fig. 7. Mean classification rate and standard error for HRV PSD and residual
PSD when subjects breathe at a paced rate of 0.15 Hz.

Fig. 8. (a) Mean squared prediction error as a function of the scaling factor.
(b) Comparison of unscaled (� � ���) and scaled (� � ����) predictions.
Data corresponds to subject #4.

C. Stress Detection With Spontaneous Respiration

The effects of the normalization gain (6) on HRV predictions
from spontaneous breathing are illustrated in Fig. 8. Without
normalization ( ), the model underpredicts the HRV since
the ARMAX parameters are based on a paced respiratory con-
dition. Introducing the multiplicative scaling factor addresses
this issue. Fig. 8(a) illustrates the sensitivity of the model
with respect to the scaling factor; a minimum mean-squared
error prediction is obtained for (data corresponds to
subject #4).

Inspection of the respiratory signals indicates that subjects
tend to follow different breathing patterns during the two ex-
perimental conditions: slow breathing when relaxed, and faster
breathing when stressed (Fig. 9). Though this result shows that
the respiratory signal itself may contain a significant amount of
discriminatory information, it is important to note that respira-
tion can be under voluntary control, which questions its validity
as an objective measure of stress.

Results on the residual analysis are illustrated in Fig. 10
for a particular experiment with subject #4. The HRV signal
[Fig. 10(b)] shows peaks at similar frequencies as the respi-
ratory signal [Fig. 10(a)], but also at other frequencies that
cannot be explained by the respiratory behavior. Subtraction of
respiratory predictions shows that residual energy lies primarily
in the 0.1 Hz band, a region that has been hypothesized to be
a resonance of the cardiac system (see results in Section V-A).

Fig. 9. Respiratory spectra for the four subjects under the two experimental
conditions (relax versus stress). All subjects tend to breathe faster under stress.
(a)–(d) Corresponds to subjects #1–4.

Fig. 10. Power spectrum of: (a) respiration signal (input), (b) HRV signal
(output), (c) prediction by ARMAX model, and (d) residual signal under
spontaneous breathing; data corresponds to subject #4. Numbers in (a) and (b)
indicate corresponding peaks.

More importantly, the results in Fig. 10(c) and (d) suggest an
alternative interpretation of our model. Whereas traditional
HRV analysis decomposes the power spectral density into
two fixed spectral bands (LF versus HF), our model suggests
that HRV may be decomposed into two components: one that
correlates with respiratory behavior [energy in Fig. 10(c)], and
one that is orthogonal to it [energy in Fig. 10(d)]. The decom-
position afforded by our model is advantageous because (unlike
the LF/HF ratio) it is not affected by the particular breathing
rate; what matters is the ratio between the HRV energy that is
correlated with respiration (whatever the respiration rate may
be) and the HRV energy that is uncorrelated with respiration.
This interpretation is numerically assessed next.

Following the procedure described in Section V-B, we com-
pared HRV analysis against residual HRV analysis through a
pattern recognition experiment. Namely, we built a quadratic
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Fig. 11. Mean classification rate and standard error for HRV and residual anal-
ysis when subjects breathe spontaneously.

classifier to discriminate between stress and relaxation condi-
tions on the basis of two HRV features (HF and LF power), and
built a second classifier to discriminate between stress and relax-
ation conditions based on two residual HRV features: the pre-
dicted HRV power in Fig. 10(c) and the residual HRV power
in Fig. 10(d). Fig. 11 summarizes the classification results. For
subjects 1, 2, and 4 the residual features outperform the HRV
PSD by 10%, whereas for subject 3 both methods obtained a
100% classification rate. In addition, classification results on the
predicted/residual signal have significantly lower standard devi-
ations than those based on raw HRV. This pattern of results was
also observed with the results on paced breathing presented in
Section V-B. To assess the relative contribution of the normal-
ization stage, we also compared the normalized (scaled) model
against the baseline model ( ). Results in Fig. 11 show
that the scaled model performs better for all subjects, leading to
higher classification rates and lower variance than the baseline
(unscaled) model.

VI. DISCUSSION AND CONCLUSION

The LF/HF ratio of HRV has been widely used as an index
of autonomic nervous balance, and also as a measure of mental
load/stress. Measurements of heart rate are robust, relatively
unobtrusive, and affordable, so they have broad potential for
long-term ambulatory monitoring. However, various con-
founding factors can also influence the LF/HF in addition to
psychophysiological stress; among these, the effect of respira-
tion is immediate and most dominant. At normal breathing rates
(12–20 breaths per minute, on average), respiratory influences
in HRV tend to fall within the HF band. However, breathing
can often fall within the LF band, in which case the LF/HF
ratio loses its diagnostics value. This issue is compounded by
evidence that the cardiorespiratory system has a resonance in
the frequency range of 0.1 Hz; thus, when breathing within the
LF band, the effects of respiration tend to be amplified. Unless
respiratory contributions are considered, HRV analysis may
lead to erroneous results.

To address this issue, we have introduced a system identi-
fication method to compensate for respiratory influences. Our
approach consists of modeling the effect to respiration on HRV
with an ARMAX model; namely, given a tap delay of respira-
tory measurements, the model predicts the next heart period. In
this fashion, the model can be used to subtract (linear) influences

of respiration on HRV, which we hypothesized would make the
effects of stress more salient on the resulting residual signal.
To account for ventilation differences between paced breathing
(which is required to obtain a broadband respiration signal for
the ARMAX model) and spontaneous breathing, we also intro-
duce a scaling factor that allows us to apply the learned ARMAX
model in more natural settings where the subjects breathe freely.
We validated our method using experimental data from four sub-
jects, and our results show the superiority of the residual HRV
signal over the traditional HRV approach, both during paced and
spontaneous breathing conditions. Our modeling approach can
also be interpreted as a decomposition of HRV energy into two
orthogonal components: one that correlates with respiratory be-
havior and one that is orthogonal to it. This decomposition is ad-
vantageous because, unlike the traditional LF/HF ratio, it does
not rely on fixed frequency bands but instead adapts to the res-
piratory rate of the subject.

Several directions of future works are being considered at the
time of this writing. First, our study indicates that day-to-day
variations are a major source of noise; data from subjects whose
HRV remained stable across days yielded higher classification
rates. Thus, practical calibration procedures are needed in order
to compensate for differences from day to day. Second, the clas-
sification models tend to be user-dependent given the idiosyn-
crasy of physiological signals. Thus, more work is required in
order to identify robust cardiorespiratory transfer functions that
generalize across subjects. Third, the present study relied on
a linear model to capture cardiorespiratory relationships. Non-
linear extensions (e.g., Volterra series) may allow us to capture
the known nonlinear dynamics of the cardiorespiratory system
[30]. Finally, we are in the process of conducting a large am-
bulatory study to test the ability of our model to detect mental
stress in activities of daily living.
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