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ABSTRACT 

 
The ability to measure a person’s physiological parameters in a 

contactless fashion without attaching electrodes to the skin has 

tremendous potential in making healthcare delivery more efficient. 

In this paper, we present a proof-of-concept method for measuring 

one such vital parameter, heart rate variability (HRV), in a 

contactless fashion from the spontaneous pupillary fluctuations. 

Pupillary measurements are done using a remote eye tracker for 

imaging and an integro-differential algorithm for the segmentation 

of the pupil-iris boundary. We estimate HRV from energy 

distribution in the low frequency (LF) (0.04 to 0.15 Hz) and high 

frequency (HF) (0.15 to 0.4 Hz) bands of the power spectrum of 

the pupillary fluctuations. In our study, we noted statistically 

significant correlation between the estimated HRV and the ground 

truth measures under a range of breathing conditions and under 

different illumination levels. The high degree of agreement evident 

in our results suggests that pupillary fluctuations obtained in a 

contactless fashion can be a reliable indicator of HRV. 

 

Index Terms— Contactless sensors, physiological sensing, heart 

rate variability, pupillometry 

1. INTRODUCTION 

Physiological parameters provide important information on the 

health, emotional, and cognitive state of a person. Parameters such 

R-R beat interval, heart rate variability (HRV) or electro-dermal 

activity (EDA) are all indicators of modulation in the autonomic 

nervous system (ANS) [1]. Physiological signals are also widely 

used for health and fitness monitoring, stress assessment, 

psychophysiological studies, and a multitude of other applications. 

Among the different physiological variables, HRV is of special 

significance because it provides important information about the 

cardiovascular regulation by the ANS, and for the diagnosis of 

cardiac and other chronic and acute diseases [2]. 

HRV measurement with existing technologies is obtrusive, as 

it requires skin contact via electrodes, chest straps, finger clips etc. 

It can further be uncomfortable to the subject, and some sensor 

modalities (e.g., pulse oximetry) can even restrict activities of daily 

living. Contactless physiological sensing, that is, remotely 

measuring vital parameters without affixed electrodes to patients’ 

skin, can provide a viable solution to these problems. Besides 

being unobtrusive, contactless sensors can have an additional 

potential benefit of reducing contact artifacts caused by the 

electrodes.  

In this paper, we target the problem of contactless 

measurement of HRV. Our approach relies on measuring 

fluctuations in pupil diameter , which are typically modulated by 

cardiopulmonary rhythms [3]. For this purpose, we use a 

remote/desktop eye-tracker to image the eyes from which the 

pupillary information is extracted. We then use the Viola-Jones 

algorithm [4] for eye detection in the images and the Daugman’s 

integro-differential operator [5] to extract pupil and iris centers and 

radii. Finally, we analyze the power spectrum density (PSD) of 

pupil dilation in the LF and HF bands to estimate HRV. Our results 

show statistically significant correlations between the pupil-based 

contactless measurement of HRV and ground truth measurements 

from a commercial heart-rate monitor. We also illustrate the 

robustness of the method under different ambient illumination 

levels, to which pupil dilation is very sensitive.  

Relation to prior work: Our work is motivated by the 

limitations of the existing methods for contactless physiological 

sensing which mainly use radar-based techniques ([6-9]). These 

methods can provide reliable readings but are limited in that even 

small involuntary body movements can significantly reduce the 

signal-to-noise ratio (SNR). In contrast with radar-based 

approaches, our proposed method operates in the optical domain 

by measuring pupillary fluctuations. Prior research correlating 

pupil size and physiological variables has had one major limitation 

in that it makes assumptions about the ambient illumination levels 

[10-12]. As opposed to these, our approach measures pupillary 

fluctuation in a contactless fashion.  Because we work in the 

frequency domain by focusing on pupillary fluctuations, as 

opposed to absolute pupil diameter, our system is robust to 

illumination conditions as well as scale/resolution differences. 

2. BACKGROUND AND PRIOR WORK 

Heart rate variability (HRV) is the physiological phenomenon of 

variation in the beat-to-beat (R-R) intervals. It is one of the most 

widely used quantitative markers of cardiovascular regulation by 

the autonomic nervous system (ANS). Analysis of HRV can 

provide important information in the diagnosis of cardiac and other 

chronic and acute diseases. HRV measures are also widely used in 

psychophysiology as an indicator of autonomic balance: activation 

of the sympathetic nervous system (SNS) branch leads to reduction 

in HRV (fight/flight response), while activation of the 

parasympathetic nervous system (PNS) component is associated 

with increases in HRV [1, 2]. 

Pupil is an aperture in the iris that regulates the amount of 

light entering the eye. Pupil size can be affected by two factors: 

optical responses and fluctuations caused by ANS.  The pupillary 

optical response comprises of light reflex, which controls the 

diameter of the pupil in response to illumination levels, and the 

accommodation response, which changes the curvature of the lens 
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to control the depth of field. In turn, activation and inhibition of the 

two ANS branches lead to small-scale spontaneous pupillary 

fluctuations known as hippus [13]; these fluctuations are the target 

of our study. 

2.1 Literature review 

Various approaches have been developed for contactless 

physiological sensing, including radar-based sensors, thermal 

imaging and, more recently, web cameras. In early work, 

Grenecker [8] presented an active sensing technique for noncontact 

measurement of breathing rate. The author used Doppler-

modulated radar to sense the shock wave reflecting off the chest 

wall expansion and contraction during breathing.  More recently, 

Droitcour developed a low-power sensor for measuring cardio-

respiratory rates [6] using microwave Doppler radar. These radar-

based methods rely on detecting small skin/organ displacements 

resulting from cardiopulmonary pulses, so they are rather sensitive 

to motion artifacts. As an example, seemingly small body motion 

can produce much larger Doppler-modulated radar cross-sections 

than those caused by the physiological motion of interest. Pavlidis 

and colleagues have used high-end thermal imaging cameras to 

measure a variety of physiological variables, including vessel 

blood flow, cardiac pulse, breathing rate [14]; their methods have 

been used for large-scale screening in homeland security 

applications [15, 16]. Recently, Poh et al. [17] used consumer web 

cameras for non-contact measurement of HR, breathing rate, and 

HRV. The authors showed how fluctuations in the RGB color 

channels of facial images correlate with various physiological 

variables. 

Pupillometry has been widely used in medical and 

psychophysiology studies. In early work, Ohtsuka et al. [10] found 

correlation between respiration and fluctuations in pupil diameter. 

Nakayama et al. [18] performed frequency analysis on the 

pupillary response and eye movement to study the effect of mental 

workload. Their study showed a significant increase in power 

spectral density (0.1–0.5 Hz) with task difficulty. The transient 

pupil light reflex (PLR) has been used for the assessment of 

autonomic function in athletes, autistic and healthy children [12, 

19, 20]. Fan et al. [12] compared the PLR profiles between autistic 

children and children with typical development. They found 

autistic group to have significantly longer PLR latency. Filipe et al. 

[19] evaluated autonomic functions in athletes using PLR 

parameters which included reflex amplitude, pupil redilation time, 

constriction and redilation velocity) . 

3. METHODS 

An overview of our approach for contactless measurement of 

heart-rate variability is illustrated in Figure 1.  In a first step, we 

localize the eye in the image using the Viola-Jones multi-scale 

object detector [4].   The method uses Haar-like features to encode 

details, which are then used with a cascade of classifiers to locate 

the presence of the target object (eye) in the given image. Once the 

eye has been located, we preprocess the image to remove the 

corneal reflections. Next we detect the pupil-iris boundary using an 

integro-differential operator, which allows us to compute the pupil 

diameter.  The image processing is illustrated in Figure 1 (bottom). 

In a final step, we perform spectral analysis of the fluctuations in 

pupil diameter to extract an index of HRV. 

 
 

 
Figure 1: Overview of the method 

 

The critical step in the process is accurately detecting the pupil and 

iris center and their respective boundaries. These are challenging 

problems because of issues such as occlusion by the eye lids and 

eye lashes, corneal reflections, color of the eye, imaging angle, etc. 

[21]. A few approaches have been developed for this purpose, 

which mainly use variants of Hough transform and active contours 

[22, 23]. Hough transform based methods require threshold value 

selection for edge detection which can lead to failures with off-axis 

and noisy images. Similarly, active contour models can lead to 

false contours because of eyelids and eyelashes [23].  

To address the limitations of conventional methods for 

iris detection, we used a method originally proposed by Daugman 

[5] that is robust to occlusions caused by the upper and lower 

eyelids. The algorithm assumes the pupil and iris have circular 

geometry, and uses an integro-differential operator to locate the 

boundaries between them:  
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where   (   ) is the image and   ( ) is a smoothing gaussian 

kernel. The three parameters        (center) and    (radius) define 

the path of the contour for integration.   

Equation (1) essentially acts as a circular edge detector: it 

iteratively searches for a maximum contour integral derivative with 

increasing radius of the circular contour in image space. Namely, a 

circular projection is obtained at every location of the eye image, 

and the differential value of the projection is computed. The 

differential values are then convolved with the gaussian kernel for 

smoothing. The circular contour with maximum change in pixel 

intensity results in the largest convolved differential value; this is 

taken as the estimated boundary. To locate the iris and pupil, the 

spread parameter   in the smoothing gaussian kernel takes two 

distinct values. In a first step, the operator uses a coarse value to 

find the pronounced boundary between the iris and the sclera. 

Detecting the iris-sclera boundary considerably reduces the ROI 

for locating the pupil-iris boundary, which requires a much finer 

spread parameter.  

For efficient implementation, we interchange the order of 

differentiation and convolution in eq. (1) and concatenate them. To 

discretize eq. (1), we then use the finite difference approximation 

of the derivative operator: 
   ( )

  
  

 

  
  (   )   

 

  
  ((   )  ) (2) 

 



Department of Computer Science and Engineering, Texas A&M University, Technical Report tamu-cs-tr-2012-12-1 

3 

 

then we replace the convolution and integral with summations 

resulting in equation (3)  (shown at the bottom of the page). In 

eq.(3),    is a small increment in the radius,    is the angular 

sampling interval along the circular arcs, K is the convolution shift 

parameter, and (       (   )    )         (   )    ) 
represents a point on the circular contour. 

Although this algorithm is a robust technique for detection of 

the pupil, it can be susceptible to corneal specular reflection .  To 

address this issue we add a preprocessing step to first detect the 

reflections as holes and then fill them using a flood-fill operation. 

This operation brings the intensity of the light area that are 

surrounded by darker areas upto the same intensity level as the 

surrounding pixels. This corresponds to removing regional 

extremums that are not connected to the image border. 

4. EXPERIMENTAL 

To validate our methods, we used a low-cost eye tracking system 

with IR illumination (easyGaze; Design Interactive, Inc.). The eye-

tracker consists of an IR sensitive camera (resolution 1280 960, 

16 FPS) and arrays of IR LEDs (power: 1 mW/cm2, wavelength: 

850 nm) which are offset from the optical axis.  The off-axis setup 

causes the IR light reflection to be projected away from the 

camera; this makes the pupil darker than the iris and the sclera 

lighter than the iris, thus enabling accurate segmentation of the 

pupil and iris boundaries.  We also used a Zephyr Bioharness BT 

chest strap heart rate sensor (sampling rate: 18 Hz) to obtain 

ground truth measures of HRV and respiration.  

Before doing spectral analysis, we preprocess the 

pupillary and cardiac signals to address irregular and burst 

sampling. As occurrences of R-wave are not equidistantly timed 

events, this results in irregularly sampled R-R interval time series, 

which cannot be used directly for spectral analysis. We performed 

bicubic interpolation on the signal to resample it into a uniformly 

timed series. Similarly we interpolated the pupillary time series to 

account for missing frames and non-uniform sampling. After 

resampling, we compute pupil dilation by subtracting the current 

pupil diameter from a baseline value, measured as the average 

pupil diameter computed over the past 1.5 seconds using a sliding 

window. We chose this duration because it is a good 

approximation of the response time of the pupil to a stimulus  [1]. 

4.1 Protocol 

The study was conducted on 5 subjects, all male, between the ages 

of 22-28 years and was approved by the Texas A&M Institutional 

Review Board. The experiments were performed indoors with 

participants seated on an adjustable chair in front of the remote eye 

tracker at a distance of approximately 2 feet. Figure 1 illustrates 

our experimental setup.  

The experiments were divided into two phases. In the first 

phase, we conducted the experiments under paced breathing at 6, 9, 

12 breaths per minute (bpm) as well as under spontaneous 

breathing. For paced breathing, we used an audio pacing signal 

which guided the subjects to inspire/expire at appropriate times to 

maintain the desired breathing pace. For spontaneous breathing, no 

pacing signal was used, e.g., subjects were allowed to breathe at 

their own pace. Pupillary, cardiac, and breathing data was collected 

for 5 minutes under each breathing condition for each subject. In 

the second phase, we evaluated our method under two illumination  

 

levels (high and low) set by modifying the brightness and color of 

two 22” LCD monitors placed at a distance of 3 feet from the 

subject. For the high illumination condition both screens displayed 

white color at maximum brightness, whereas for the low 

illumination condition they displayed a black color with minimum 

brightness. During phase two, participants were asked to follow a 9 

bpm breathing pacing signal.  

5. DATA ANALYSIS AND RESULTS 

As pupillary fluctuations and R-R interval are both influenced by 

ANS activity, we hypothesized a strong correlation between the 

two signals. Analysis in the temporal domain, however, does not 

reveal such correlation between the two signals –see Figure 2.  As 

a result, using time-domain measures of HRV such as RMSSD 

(root mean square of the successive differences) [2] to analyze 

pupillary dilation (PD) is likely to be ineffective. Instead, our 

method focuses on HRV measures based on frequency-domain 

analysis. Figure 3 shows the power spectral density (PSD) of the 

two signals under different breathing paces (6, 9, 12 bpm) and 

under spontaneous breathing in normalized units (n.u.).  Under 

paced breathing (see Figure 3(a)), each signal (RR interval: red; 

PD: blue) shows a prominent peak at the specified breathing rates. 

The pupillary PSD, however, shows a broader spectral peak; this 

result is to be expected given the higher noise levels shown in the 

time-domain signal of Figure 2. Under spontaneous breathing –

Figure 3(a) bottom, both signals also have a much wider spectral 

spread compared to the paced breathing condition. This result is 

also reasonable since under spontaneous breathing the breathing 

rate for each subject changes over time. Overall, though, these 

plots show that under both paced and spontaneous breathing 

conditions, there is significant overlap between the RR and PD 

spectra, which indicates that the PD spectra can be used to 

compute HRV. 

To verify our visual inspection of the results in Figure 3, 

we extracted two spectral features of HRV from both signals: 

energy in the HF band (0.15 to 0.4 Hz) and in the LF (0.04 to 0.15 

Hz) bands.  Results are shown in Figure 3(b). The x-axis of the 

scatter plots represents the HRV features from the contact sensor 

(RR), while the y-axis shows the HRV obtained from the 

contactless method (PD).  A strong correlation between the two 

measures is evident in both bands. The correlation coefficient 

between the estimated HRV and ground truth was found to be 

         for the LF and          for the HF band (        in 

{         }        
         

|
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Figure 2: R-R interval and pupil dilation time series 
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both cases). 

5.1 Robustness to illumination intensity 

Pupillary size is highly sensitive to ambient light intensity.  As a 

result, psychophysiological variables derived from the absolute 

pupil diameter (e.g., mental workload) must be measured under 

controlled lighting conditions.  However, because our approach 

relies on fluctuations in pupil diameter we hypothesized that it 

would be robust to lighting conditions.  

Figure 4(a) shows the time-domain signal for pupillary size 

(one subject) under the low and high illumination conditions 

described in section 4.1.  With high illumination, the pupil 

diameter is reduced to limit the amount of light entering the eye; in 

contrast, with low illumination, the pupil diameter becomes larger 

to allow more light.  Clearly, any measure relying on absolute 

pupillary size will have to account for the ambient light intensity. 

Figure 4(a) shows that fluctuations in PD are also affected by the 

ambient light: the amplitude of the fluctuations is smaller under 

high illumination; this is because under high illumination the pupil 

is already constricted to a small radius thus restricting further large 

fluctuations leading to a lower spectrum.  However, the frequency 

of the fluctuations remains constant in both cases.  Figure 4(b) 

shows the power spectra of the RR interval and PD at high and low 

illumination levels (same subject as in Figure 4(a)). At both 

illumination levels, the power spectra shows a peak at 0.15 Hz 

(breathing rate: 9 bpm) though, as observed in the time-domain 

signals of Figure 4(a), the peak in the PD power spectra has a 

lower amplitude for the high illumination condition than for the 

low illumination condition.  Overall, though, these results indicate 

that spectral analysis of PD fluctuations is robust to changes in 

illumination levels. Figure 4(c) shows the peak frequency for the 

RR and PD spectra under the two illumination levels for the five 

subjects. Regardless of illumination conditions (or individual 

differences across subjects) the spectra peaks at around 0.15 Hz 

which corresponds to the specified breathing rate of 9 bpm. 

 

6. DISCUSSION AND CONCLUSION 

We presented a proof of concept for measuring HRV from 

pupillary fluctuations in a contactless fashion. This method uses IR 

images of the eye from which the pupillary fluctuations are 

obtained. HRV is then computed from the power spectrum of the 

pupillary data. Our study demonstrated statistically significant 

correlation between the HRV measurements made from the 

pupillary spectrum and the ground truth values under a range of 

breathing conditions. 

Along with breathing conditions, we also tested our method 

under different illumination levels. As explained in [1], the 

pupillary light reflex (PLR) constitute a major component in the 

overall  pupillary response and is known to be larger in magnitude 

than spontaneous pupillary fluctuations caused by ANS. Because 

in this study we were utilizing the pupillary fluctuations as 

opposed to absolute pupil diameter we hypothesized that our 

method would be robust under different illumination conditions. 

With our experiments, we validated this hypothesis and obtained 

accurate results. This shows that useful physiological information 

can be extracted from the pupillary fluctuations spectrum even 

under different illumination levels.  

The next logical step for us would be to evaluate the method 

under dynamic changes in illumination. In this case, the light reflex 

can be accounted for by integrating the PLR model [24] with our 

method. Such a model would express the pupil diameter as a 

function of the ambient lighting which can be subtracted to obtain 

the ANS component in pupillary fluctuations. In this work, we 

used a remote eye tracker for IR imaging but the eye-tracking 

capability on the device was not used or needed. Hence off-the-

shelf IR webcams such as [25] or the IBM pupil-cam [26] can also 

be used instead which would theoretically provide similar 

performance.  

Although we achieved high level of accuracy, the results 

should be considered in the light of the following issues.  The 

current pupil detection algorithm has proven to be robust against 

minor head movements. However, other sources of inconsistencies 

such as rotation of the camera, and large movements might cause it 

to fail. Also, because it performs exhaustive search, even with a 

coarse-to-fine strategy the algorithm can be inefficient. The 

Adaboost-cascade iris detector suggested by He at al. [21] might 

provide an efficient alternative. Finally, our study was conducted 

with relatively small sample size and a longitudinal study would 

provide more insight and validate our method. From our results, it 

is however evident that HRV can be accurately computed from 

pupillary fluctuations in a contactless fashion and be potentially 

used for numerous real world applications. 

  

(a) (b) 

Figure 3: (a) Power spectra of R-R interval, and pupillary 

fluctuations for different breathing rates (1 subject). (b) HRV 

from pupil and R-R for all subjects. 

 
  

(a) (b) (c) 

Figure 4: (a) PD in low and high light (1 subject) (a) Power 

spectra of RR and PD in L and H light (1 subject). (c) Peak 

frequency of RR and PD spectra in L and H light (5 subjects) 

0 0.1 0.2 0.3
0

10

20

6 bpm

P
o
w

e
r 

(n
.u

.)

 

 

Frequency (Hz)

PD

RR

0 0.1 0.2 0.3
0

10

20
9 bpm

Frequency (Hz)

P
o
w

e
r 

(n
.u

.)

 

 

0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

Frequency (hz)

P
o
w

e
r 

(n
.u

.)

12 bpm

 

 

0.05 0.1 0.15 0.2 0.25 0.3
0

10

20
Spontaneous breathing

Frequency (Hz)

P
o
w

e
r 

(n
.u

.)

 

 

0 100 200 300 400
0

50

100

150

200

250

300

350

R-R HRV

P
u
p
ill

a
ry

 H
R

V

LF band 

 

 

6 bpm

9 bpm

12 bpm

spontaneous

0 100 200 300 400
0

50

100

150

200

250

300

350

R-R HRV

P
u
p
ill

a
ry

 H
R

V
HF band

 

 

500 1000 1500 2000

-1

0

1

2

3

4

time (samples)

P
u
p
il 

d
ila

ti
o
n

 

 
Low light

High light

0 0.1 0.2 0.3
0

5

10

15

Frequency (Hz)

P
o
w

e
r 

(n
.u

.)

 

 
RR low 

RR high 

PD low 

PD high

0.14 0.15 0.16
0.14

0.15

0.16

Peak frequency (RR)

P
e
a
k
 f

re
q
u
e
n
c
y
 (

P
D

)

 

 

Low light

High light



Department of Computer Science and Engineering, Texas A&M University, Technical Report tamu-cs-tr-2012-12-1 

5 

 

7. REFERENCES 

[1] J. T. Cacioppo, L. G. Tassinary, and G. Berntson, Handbook 

of psychophysiology: Cambridge University Press, 2007. 

[2] T. Force, "Heart rate variability: standards of measurement, 

physiological interpretation and clinical use. Task Force of 

the European Society of Cardiology and the North American 

Society of Pacing and Electrophysiology," Circulation, vol. 

93, pp. 1043-65, 1996. 

[3] G. Calcagnini, S. Lino, F. Censi, and S. Cerutti, 

"Cardiovascular autonomic rhythms in spontaneous pupil 

fluctuations," in Computers in Cardiology 1997, 1997, pp. 

133-136. 

[4] P. Viola and M. Jones, "Rapid object detection using a 

boosted cascade of simple features," in Proceedings of the 

IEEE Computer Society Conference on Computer Vision and 

Pattern Recognition. CVPR 2001. , 2001, pp. I-511-I-518 

vol. 1. 

[5] J. G. Daugman, "High confidence visual recognition of 

persons by a test of statistical independence," IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

vol. 15, pp. 1148-1161, 1993. 

[6] A. D. Droitcour, "Non-contact measurement of heart and 

respiration rates with a single-chip microwave Doppler 

radar," Citeseer, 2006. 

[7] M. Garbey, A. Merla, and I. Pavlidis, "Estimation of blood 

flow speed and vessel location from thermal video," in 

Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. CVPR 2004. , 

2004, pp. I-356-I-363 Vol. 1. 

[8] E. Greneker, "Radar sensing of heartbeat and respiration at a 

distance with applications of the technology," in In Radar 97 

(Conf. Publ. No. 449), 1997, pp. 150-154. 

[9] D. Holdsworth, C. Norley, R. Frayne, D. Steinman, and B. 

Rutt, "Characterization of common carotid artery blood-flow 

waveforms in normal human subjects," Physiological 

measurement 20.3 (1999), vol. 20, p. 219, 1999. 

[10] K. Ohtsuka, K. Asakura, H. Kawasaki, and M. Sawa, 

"Respiratory fluctuations of the human pupil," Experimental 

Brain Research, vol. 71, pp. 215-217, 1988. 

[11] J. Klingner, R. Kumar, and P. Hanrahan, "Measuring the 

task-evoked pupillary response with a remote eye tracker," in 

Proceedings of ETRA, 2008, pp. 69-72. 

[12] X. Fan, J. H. Miles, N. Takahashi, and G. Yao, "Abnormal 

transient pupillary light reflex in individuals with autism 

spectrum disorders," Journal of autism and developmental 

disorders, vol. 39, pp. 1499-1508, 2009. 

[13] I. Loewenfeld and O. Lowenstein, "The light reflex," The 

Pupil: Anatomy, Physiology and Clinical Applications, pp. 

189-193, 1993. 

[14] M. Garbey, N. Sun, A. Merla, and I. Pavlidis, "Contact-free 

measurement of cardiac pulse based on the analysis of 

thermal imagery," IEEE Transactions on Biomedical 

Engineering, vol. 54, pp. 1418-1426, 2007. 

[15] I. Pavlidis, N. L. Eberhardt, and J. A. Levine, "Seeing 

through the face of deception," Nature, vol. 415, pp. 35-35, 

2002. 

[16] P. Buddharaju, J. Dowdall, P. Tsiamyrtzis, D. Shastri, I. 

Pavlidis, and M. Frank, "Automatic thermal monitoring 

system (ATHEMOS) for deception detection," in IEEE 

Computer Society Conference on Computer Vision and 

Pattern Recognition CVPR 2005., 2005, p. 1179 vol. 2. 

[17] M. Z. Poh, D. J. McDuff, and R. W. Picard, "Advancements 

in noncontact, multiparameter physiological measurements 

using a webcam," IEEE Transactions on Biomedical 

Engineering, vol. 58, pp. 7-11, 2011. 

[18] M. Nakayama and Y. Shimizu, "Frequency analysis of task 

evoked pupillary response and eye-movement," in 

Proceedings of the symposium on Eye tracking research & 

applications.  2004, 2004, pp. 71-76. 

[19] J. A. Capão Filipe, F. Falcao-Reis, J. Castro-Correia, and H. 

Barros, "Assessment of autonomic function in high level 

athletes by pupillometry," Autonomic Neuroscience, vol. 

104, pp. 66-72, 2003. 

[20] K. C. Donaghue, M. Pena, A. Fung, M. Bonney, N. Howard, 

M. Silink, et al., "The prospective assessment of autonomic 

nerve function by pupillometry in adolescents with type 1 

diabetes mellitus," Diabetic medicine, vol. 12, pp. 868-873, 

1995. 

[21] Z. He, T. Tan, Z. Sun, and X. Qiu, "Toward accurate and fast 

iris segmentation for iris biometrics," IEEE Transactions on 

Pattern Analysis and Machine Intelligence, vol. 31, pp. 

1670-1684, 2009. 

[22] R. P. Wildes, J. C. Asmuth, G. L. Green, S. C. Hsu, R. J. 

Kolczynski, J. Matey, et al., "A system for automated iris 

recognition," in Proceedings of the Second IEEE Workshop 

on Applications of Computer Vision, 1994, 1994, pp. 121-

128. 

[23] N. Ritter, R. Owens, J. Cooper, and P. P. Van Saarloos, 

"Location of the pupil-iris border in slit-lamp images of the 

cornea," in Proceedings. International Conference on Image 

Analysis and Processing, 1999. , 1999, pp. 740-745. 

[24] V. F. Pamplona, M. M. Oliveira, and G. V. G. Baranoski, 

"Photorealistic models for pupil light reflex and iridal pattern 

deformation," ACM Transactions on Graphics (TOG), vol. 

28, p. 106, 2009. 

[25] (2012). Agama Available: 

http://www.agamazone.com/products_v1325r.html 

[26] C. H. Morimoto, D. Koons, A. Amir, and M. Flickner, 

"Pupil detection and tracking using multiple light sources," 

Image and vision computing, vol. 18, pp. 331-335, 2000. 

 

 

http://www.agamazone.com/products_v1325r.html

