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Abstract We present an adaptive biofeedback game that
aims to maintain the player’s arousal by modifying game
difficulty in response to the player’s physiological state, as
measured with wearable sensors. Our approach models the
interaction between human physiology and game difficulty
during gameplay as a control problem, where game difficulty
is the system input and player arousal its output. We validate
the approach on a car-racing game with real-time adaptive
game mechanics. Specifically, we use (1) car speed, road vis-
ibility, and steering jitter as three mechanisms to manipulate
game difficulty, (2) electrodermal activity as physiological
correlate of arousal, and (3) two types of control law: propor-
tional (P) control, and proportional-integral-derivative (PID)
control. We also propose quantitative measures to charac-
terize the effectiveness of these game adaptations and con-
trollers in manipulating the player’s arousal. Experimental
trials with 25 subjects in both open-loop (no feedback) and
closed-loop (negative feedback) conditions show statistically
significant differences in effectiveness among the three game
mechanics and also between the two control laws. Specif-
ically, manipulating car speed provides higher control of
arousal levels than changing road visibility or vehicle steer-
ing. Our results also confirm that PID control leads to lower
error and reduced oscillations in the closed-loop response
compared to proportional-only control. Finally, we discuss
the theoretical and practical implications of our approach.
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1 Introduction

Physiological sensors have garnered a great deal of attention
in the gaming research community [1–5]. Physiological vari-
ables such as heart rate (HR), skin conductivity, Electroen-
cephalography (EEG) etc. are under autonomic control (i.e.,
involuntary), and therefore can provide objective measures of
the player’s affective state [2]. As noted by Hettinger et al. [6]
physiological sensors “open an additional channel of com-
munication from the user to the computer, albeit a largely
unconscious one”. Thus, physiological sensors enable new
forms of gameplay and new applications beyond entertain-
ment; as an example, they may be used to improve engage-
ment and immersion, to adjust game difficulty to the player’s
skill level, and to develop game-like health interventions that
leverage the broad appeal of videogames to improve patient
compliance.

To date, however, biofeedback games have not gained
much popularity from the gaming community and are still
mostly constrained to laboratory settings [1]. Part of the issue
stems from the lack of a broadly accepted theory on how to
assess game experience, which leads to a fragmentation of
biofeedback game research. In turn, this makes assessment
of game parameters much harder since computer games are
complex systems where interaction occurs simultaneously at
multiple levels. In addition, mapping physiological signals
to game difficulty levels is not trivial.

In this work, we propose a general framework to model the
process of game adaptation, with the explicit goal of main-
taining a sustained level of arousal in the player. Borrowing
concepts from control theory [7,8], we model the player as
a dynamical system whose output (varying arousal levels)
must follow an external setpoint (constant arousal). Specifi-
cally, the control law manipulates the game’s difficulty level
so as to maintain a sustained arousal level, as measured by
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electrodermal activity (EDA). Sustained arousal at an opti-
mal level is beneficial as it can lead to higher performance
and reduced anxiety [5] and improved attention levels [9,10].
Our approach has several advantages. First, it allows us to
simulate the behavior of the system under different para-
meter settings, which can help guide the game development
process. Second, the model provides a compact parameteri-
zation of the system, which facilitates the evaluation of differ-
ent game mechanics. Third, it provides objective measures of
system performance (error, oscillation) that are complemen-
tary to subjective and observation-oriented measures often
used in game evaluations. Implicit here is the assumption
that there is a mapping between the psychophysiological vari-
ables [11,12] and that there exists a reference physiological
level which the control law and the game mechanics can tar-
get, i.e., the reference level is observable, and the player’s
EDA is controllable [7,8]. Finally, the approach is not lim-
ited to maintaining sustained arousal levels, and could be
used to track time-varying arousal setpoints, e.g., oscillatory
levels of arousal.

To validate our approach, we have developed an adap-
tive multimodal car-racing game (with unimodal feedback)
and characterized three different game-adaptation mechan-
ics: visibility, steering, and speed. Our evaluation consists of
three steps. First, we test the system in an open-loop config-
uration; this allows us to calibrate the system to each indi-
vidual player and evaluate the effectiveness of each game
mechanics to bring about a change in the player’s physiol-
ogy. Then we evaluate the system in a closed-loop config-
uration where the game mechanics are modulated by two
different feedback control laws –proportional (P) control,
and proportional-integral-derivative (PID) control, to main-
tain the player’s arousal around a desired setpoint. Our results
show that speed adaptation is more effective than the other
two mechanics in both open-loop and closed-loop conditions
as measured by the skin conductance response, rise time, and
mean squared error, and that the PID controller can reduce
tracking errors and dampen oscillations in EDA, as compared
to P control.1

The rest of the paper is organized as follows. Section
2 summarizes prior work on integrating physiological sen-
sors with videogames. Section 3 describes our modeling
methodology based on control theory. Section 4 describes
the adaptive videogame we have developed to validate our
model, followed by the experimental protocol in Sect. 5.
Section 6 presents results from simulation as well as user
studies. Finally, Sect. 7 summarizes our findings and pro-
vides direction for future work.

1 An earlier version of this work was presented at the International Con-
ference on Affective Computing and Intelligent Interaction (ACII’13)
[13].

2 Related work

The majority of approaches to dynamic difficulty adjustment
(also known as dynamic game balancing) use the player’s
performance on the game as the main measure of difficulty2

[14]. Using task performance is appealing because it can be
integrated in the game without the need for additional hard-
ware. However, it is not task performance but the emotional
experience of the player that is critical in gameplay [15]. This
is in agreement with Hook’s affective loop theory, which
argues for involving both mind and body as the basis for
designing interactive affective systems [16], and Yannakakis
studies on affective physical interaction [17]. Recent studies
have explored the use of physiological measures as a way
to capture facets of the player’s experience; these measures
can then be transformed into control signals to adapt game
parameters, in what has been described as a biocybernetic
loop [18,19].

Rani et al. [5] compared two types of feedback to adjust
game difficulty levels. The first approach (anxiety feedback)
consisted of modulating game difficulty based on the phys-
iological state of the player in a negative feedback loop;
high levels of anxiety (as measured through physiologi-
cal indicators) caused the difficulty level to drop, and vice
versa. The second approach (performance feedback) con-
sisted of varying the level of difficulty according to the
player’s performance in a positive feedback loop: better per-
formance led to an increase in difficulty level state, and
vice versa. In both cases, the game was allowed to switch
among three difficulty levels states (easy, moderately dif-
ficult, and very difficult) using a finite state machine. The
authors found that anxiety-based feedback was more effec-
tive than performance-based feedback in challenging players,
improved their performance, and lowered their anxiety.

More recently, Kuikkaniemi et al. [20] explored the influ-
ence of implicit and explicit biofeedback game in the con-
text of a first-person shooter (FPS) game. Implicit feedback
occurs when the game player is not aware that the game is
manipulated according to their physiological state; the player
may sense the feedback mechanism but only at a subcon-
scious level. In contrast, explicit biofeedback occurs when
the player has conscious control over specific game dynamic.
The authors used a within-subjects design and discovered sig-
nificant increases of immersion only in the explicit biofeed-
back condition [20]. In a related study, Nacke et al. [2] investi-
gated sensor mappings for two types of physiological signals:
voluntary (direct) and involuntary (indirect). An example of
direct (voluntary) control would be to use muscle activation
or eye gaze, whereas an example of indirect (involuntary)

2 A classic example is the “rubber band” used in car-racing games (e.g.,
Mario Kart): players who fall behind in the race will encounter more
bonuses (and fewer obstacles) than those who dominate the race.
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control would be to use HR or skin conductivity. The authors
concluded that direct input should be mapped intuitively into
actions, whereas indirect input should be used to affect envi-
ronmental variables of the game.

The subfield of adaptive automation is particularly rele-
vant to our work. Adaptive automation [9,10] is concerned
with maintaining an optimal level of vigilance in tasks that
combine human and automatic monitoring (e.g., flying an
airplane). In these scenarios, a high degree of automation
can reduce the operator’s vigilance and engagement with the
task, whereas low levels of automation can result in exces-
sive workloads. To address this problem, adaptive automation
operates as a negative feedback loop, where task allocation
to the operator is increased if he becomes hypo-vigilant and
is decreased whenever the operator’s workload becomes too
high. In a classical study by Pope et al. [19] participants
were asked to perform a tracking task analogous to those
performed by crew-members in flight management. When
the adaptive automation was run in a negative feedback loop,
the engagement indices displayed short-cycle oscillations,
whereas in a positive-loop configuration (e.g., decreased vig-
ilance lead to a reduction in task demand) the engagement
indices showed longer and more variable periods of oscil-
lation, which proved the existence of a functional relation-
ship between engagement index and task demands. In a more
recent study, Boucsein et al. [21,22] evaluated autonomic
system measures of vigilance as an alternative to EEG, which
is impractical in commercial aviation scenarios. The mea-
sures included (1) non-specific skin conductance responses
(NS.SCR), (2) NS.SCR combined with HR, and NS.SCR
combined with heart-rate variability (HRV). In this study,
subjects were asked to complete a mission on a professional
flight simulator, and their degree of arousal was used to mod-
ulate the amount of turbulences in the simulator. Results from
this study indicated that autonomic measures (EDA, ECG)
may also be used in adaptive automation. In particular, the
combination of NS.SCR and HRV was found to be robust to
motion artifacts: NS.SCR and HRV change in opposite direc-
tions with increasing task demands (e.g. NS.SCR increases
while HRV decreases), so simultaneous increases in both
variables can be dismissed since they are indicative of body
movements or deep breathing rather than of changing task
demands.

Videogames have also been combined with biofeedback
techniques to treat specific conditions. Vilozni et al. [3] devel-
oped a video game that taught breathing skills to children; in
the game, the player controlled an animated critter with their
breathing, measured with a spirometer. Herndon et al. [23]
developed a biofeedback-based game to help children with
voiding dysfunction learn to control their pelvic floor mus-
cles. By contracting or relaxing their muscles, the patients
were able to control aspects of the game, such as shooting
accuracy in basketball or distance travelled in a golf game.

Leahy et al. [24] developed a game to teach deep relaxation to
patients with irritable bowel syndrome, a condition to which
stress is a major contributor. The game required patients to
achieve increasing levels of relaxation, measured with a skin
conductance sensor, in order to progress through a visual-
ization of the digestive tract. Several commercial systems
employ similar “game-like” strategies to make biofeedback
more intuitive. In these systems, sensor signals are trans-
formed into visually-pleasing graphics and animations; see
e.g., [25]. While such elaborate biofeedback displays may
be more appealing than visualizing raw sensor signals, much
more could be gained if biofeedback was fully integrated
into a dynamic game [4]. As an example, Sharry et al. [26]
developed “Relax to Win”, a biofeedback game to treat chil-
dren with anxiety disorders. In the game, two players com-
pete on a racing game in which the speed of the player’s
avatar (a dragon) increases with the player’s ability to relax,
as measured with a skin conductance sensor; however, only
anecdotal evidence was provided to support the effective-
ness of the game. Towards this aim, in recent work [27] we
presented a biofeedback game that teaches relaxation skills
by monitoring the breathing rate of the player. Namely, we
used a positive feedback loop to penalize fast breathing by
increasing the randomness of the game. Physiological mea-
surements showed that practicing the game leads to lower
arousal during a subsequent stress-inducing task.

3 Control theoretic paradigm

We use concepts from classical control theory to model the
process of adapting the videogame in response to the player’s
arousal. As illustrated in Fig. 1a, the basic building blocks of a
control system are (1) the plant or system we wish to control,
(2) a sensor, which measures the state of the plant, and (3)
a controller, which provides an input to the plant so as to
minimize the difference between desired (setpoint) and actual
(measured) output. As an example, consider the problem of
maintaining the temperature in a home. In this case, the plant
is the heating/cooling system, the controller is the thermostat,
and the sensor is a thermistor (typically integrated in the
thermostat). Control theory provides the mathematical tools
to design the controller to meet specific performance criteria
such as rise time (i.e., responsiveness) and damping (i.e., lack
of oscillation). As an example, the controller may produce
an output that is proportional to the measured error, to the
derivative of this error (to provide damping), to the integral
of the error (to reduce residual steady-state errors) or any
combination of the three, leading to what is known as PID
control (proportional-integral-derivative).

Figure 1b shows the generic block diagram when applied
to a multimodal adaptive physiological game. In this case, the
player is the “plant” whose output (arousal) we seek to main-
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(a)

(b)

Fig. 1 Block diagram of a a classical feedback control system, and b
our adaptive physiological game

tain constant around a setpoint. The sensor in the feedback
loop is a physiological sensor, which converts the player’s
arousal into a measurable variable –EDA in our case; see
Sect. 4.2. Finally, the game-adaptation engine takes the devi-
ation between the desired and the measured arousal levels and
modulates the game parameters to reduce the error between
both. Thus, by choosing an appropriate setpoint and control
law, such a feedback system can be used to elicit desired
physiological response and/or performance levels [18,28].

The block diagram in Fig. 1b is an example of a feedback
system with a human in the loop. Although there is no well-
defined transfer function for the human [29], principles from
classical control theory can guide us in designing the feed-
back controller, modeling the player-game interaction, and
assessing the performance of the game mechanics. To illus-
trate the benefits of our control-theoretic approach, consider
the following model:

r(t) = r(t − 1) + kF d(t) (1)

d(t) = d(t − 1) − kPε(t) (2)

ε(t) = r0 − r(t) (3)

where d(t) ∈ [−1, 1] is the game’s difficulty level at
time t, r(t) ∈ [0, 1] and r0 are the player’s measured EDA
response3 and desired response, respectively, and ε(t) is the
error (difference between both).

Equation (1) is the plant model, and states that the player’s
increase in EDA at time t is proportional to the increase
in game difficulty at that time; the forward proportion-
ality constant kF captures the effectiveness of a particu-
lar game mechanics in shaping the player’s arousal level
(larger values of kF being better). Equation (2) is the pro-
portional (P) controller model; the larger the error (differ-
ence between the setpoint and desired arousal) the larger the

3 As we will see in Sect. 4.2, we use the number of skin conductance
responses (SCRs) as the measure of EDA.

Table 1 Effect of increasing controller gains on system performance

Rise time Steady-state error Oscillations

kP Decrease Decrease Increase

kI Decrease Decrease Increase

kD Minor effect No effect Decrease

change in difficulty level, with the backward proportionality
constant kP controlling how quickly the game difficulty will
change. Large values of kP can reduce steady state errors
quickly, but can also result in large oscillations and even
instability [19].

The performance of the proportional controller in Eq. (2)
can be improved by incorporating derivative (D) and integral
(I) terms, which results in the PID controller model that is
widely used in industrial control applications [7,8]:

d(t) = d(t − 1) − (kPε(t) + kD
d

dt
ε(t) + kI

∫
ε(t)dt (4)

This controller consists of three coefficients: a proportional
gain kP, an integral gain kI, and a derivative gain kD. The
proportional gain kP has the same effect as the backward
proportionality constant in the P controller. The integral
gain kI accumulates the system error and takes action to
accelerate the movement of the process towards the set-
point and reduce error, at the expense of increasing system
oscillations. The derivative gain kD measures the instanta-
neous slope of the error, predicts the overshoot and takes
corrective measures to reduce system oscillations. Table 1
summarizes the effects of the individual terms on system
performance.

4 System overview

To validate our approach, we needed a videogame that would
be intuitive, engaging, and amenable to adaptation. From
among the various game genres (e.g., strategy/puzzles, role
playing, action/adventure, sports, racing, shooter, fighter,
arcade) [30] we decided to focus on car-racing games,
because they are intuitive, easy to learn, highly dynamic,
and enable multiple forms of adaptation. For this purpose,
we adapted an open-source racing game [31] to incorporate
physiological feedback from an EDA sensor –see Fig. 2b.
To provide consistency across experimental conditions, we
modified the game such that the player was only required to
control the steering. This technique is called automatic accel-
eration and is commonly used in mobile racing games; the
speed of the car at each position in the race track is different
(e.g. high for straight lines, low for chicanes) but predeter-
mined. We obtained a nominal speed profile for the circuit
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Fig. 2 a Block diagram of the adaptive physiological game. b A partic-
ipant playing the car-racing game. c Recording of electrodermal activity
(EDA) and detected SCR events

by recording 10 game plays of a proficient player during a
pilot study.

4.1 Game adaptation mechanics

We implemented three different types of game adaptation:
weather, steering, and speed. In the weather modality, we
manipulated weather conditions (rain, snow, and fog) to
affect road visibility; see Fig. 3. At 0 % inclement weather,
the environment represented a clear sunny day with perfect
visibility. At 50 % inclement weather, visibility was reduced
to approximately 10 meters. Finally, at 100 % inclement
weather the driver had a visibility of approximately 2 meters.
Visibility at other difficulty levels was linearly interpolated
from those three points. As visibility decreases, the player
is forced to rely on subtle peripheral cues (guard rails, road
surface markings) to guide the car. Weather conditions did
not affect vehicle dynamics (e.g., adherence to the road).

Fig. 3 Effect of inclement weather (IW) on road visibility. a Under
0 % IW, visibility is perfect. Visibility drops to 10 and 2m under b 50 %
and c 100 % IW, respectively

In the steering modality, we introduced random distur-
bances to the steering direction in the form of additive nose.
At 0 % disturbance, no noise was added to the steering signal.
At 50 % disturbance, an angular jolt of 45◦ was added to the
player’s intended steering direction; at 100 % disturbance,
an angular jolt of 90◦ was added. Angular disturbances at
other % difficulty levels were linearly interpolated from those
three points. The direction of the disturbance (clockwise or
counter-clockwise) was chosen at random and the noise was
added every 0.5 s. Manipulating the steering reduced the
player’s sense of control.

In the speed modality, we linearly manipulated the speed
between 40–80 mph through a multiplicative factor on the
predetermined speeds for the racing circuit, obtained from the
pilot study. At 100 % difficulty, the speed of the car followed
the nominal speed for that location (a factor of 1). At 50 %
speed, the velocity of the car was the nominal speed at that
location reduced by a factor of 0.75. Finally, at 0 % speed,
the velocity of the car was the half the nominal speed at that
location i.e., a factor of 0.5. Manipulating the speed allowed
us to adjust the game difficulty in a more intuitive way than
altering weather conditions or the vehicle’s steering.
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4.2 Physiological measure of arousal

We estimated the players’ arousal through their electroder-
mal activity (EDA). EDA is known to be a linear correlate to
arousal and consists of two basic components, (1) a slowly
changing offset known as the skin conductance level (SCL),
and (2) a series of transient peaks known as skin conduc-
tance responses (SCR) [32] that occur in response to stimulus
including startle events (i.e., an unexpected loud noise), cog-
nitive activity, emotional arousal, and even body movements
but also spontaneously, in which case they are referred to
as non-specific (NS.SCR) [33]. SCLs are subject-dependent
and can be influenced by the choice of electrode site and con-
ductive gel. Furthermore, in the presence of an SCR, mea-
surement of the baseline SCL can be difficult. For these rea-
sons, we used the number of SCRs within a time window (T
= 30 s) sliding by 1 s as a measure of arousal. This window
size was chosen as a tradeoff between responsivity of shorter
windows and the smoothness of longer windows, and has
been recommended in prior studies to obtain reliable esti-
mates of arousal. Figure 2c shows a typical EDA signal and
the onset/offset of individual SCRs, detected by applying a
threshold to the time derivative of the raw EDA signal.

5 Experimental protocol

We conducted experimental trials as part of an indepen-
dent study with each participant playing a single (ran-
domly assigned) game mechanics. We adopted this between-
subjects design to avoid order effects such as learning or
fatigue. Twenty-five students (age 18–33 years) participated
in the study. Of these, 20 participants evaluated the P-control
adaptation: 7 for weather, 6 for steering and 7 for speed. The
remaining 5 subjects evaluated the PID-control adaptation
for speed. The majority of participants (>60 %) had little to
no experience with car racing and other console games.

We received approval from the Institutional Review Board
prior to the study, and signed consent from each individual
participant before the session. Participants played the game
on a 22” LCD using a Logitech G27 racing wheel [34];
see Fig. 2b. No background music was played during the
game other than car engine and event-related sounds (e.g.
collisions). EDA was measured with a FlexComp Infinity
(Thought Technology Ltd.) [35] and streamed to the game
engine via TCP/IP. Disposable AgCl electrodes were placed
at the palmar and hypothenar eminences in palm of the
player’s non-dominant hand [36]. To avoid motion/pressure
artifacts, participants were instructed to use only the domi-
nant hand to control the steering wheel.

The experiments were conducted in three phases on the
same day: training (phase 0), open loop (phase 1) and closed
loop (phase 2). During phase 0, biofeedback was disabled

(a)

(b)

(c)

(d)

Fig. 4 a Open loop simulation for high vs. low game effectiveness
(high kF = 0.9; low kF = 0.5). b Closed loop simulation for slow
difficulty change (low kP = 0.1; kF = 0.9). c Closed-loop simulation
for fast difficulty change (high kP = 0.9; kF = 0.9). d Closed-loop
simulation for the PID controller (kP = 1.11, kI = 0.05, kD = 4.86)

and participants drove the car for one lap around the circuit
to familiarize themselves with the game and the controls.

During the open-loop phase (phase 1), users played the
game with a particular mechanics (weather, speed or steer-
ing) at three different difficulty levels following the step
sequence {0, 50, 0, 100, 0, 50, 0, 100, 0} %, each step last-
ing one minute. Blocks of 0 % difficulty were interleaved
to minimize rollover effects between the 50 and 100 % dif-
ficulty levels. The open-loop phase ran for 8 min. During
this phase, the player’s EDA did not alter the game diffi-
culty level. Instead, the purpose of phase 1 was to collect
the player’s EDA response under a range of difficulty levels.
From here, we calculated the average number of SCRs over a
30-s window (#SCR30) across difficulty levels, and used it as
the target setpoint for the closed-loop experiments. Since the
open-loop experiment contains an unequal number of blocks
(5 blocks at 0 % difficulty, 2 at 50 %, 2 at 100 %; see Fig. 4a),
the resulting setpoint is biased towards low difficulty (33 %).

During phase 2 (closed-loop), participants played the
game for two 5-min sessions with a 2-min break. During this
time, game difficulty was adapted in response to the player’s
EDA so as to maintain the setpoint (i.e., the average #SC R30

during phase 1) using the proportional control law in Eq. (2)
or the PID control law in Eq. (4). Phase 2 allowed us to eval-
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uate the effectiveness of the feedback loop in maintaining the
player’s arousal level at the desired value.

6 Results

6.1 Simulation results

First, we illustrate the behavior of the system by simulat-
ing the model in Eqs. (1–4). Results for phase 1 (open loop)
are shown in Fig. 4a for two values of kF (low, high). Here,
the game difficulty level was driven by the step sequence
{0, 50, 0, 100, 0, 50, 0, 100, 0} %. For high kF (=0.9), the
number of SCRs increases sharply upon the introduction of
the first pulse (50 % difficulty) and begins to decay once the
difficulty level is brought back to 0 %; for low kF (=0.5)

the increase is more gradual and less pronounced. A similar
behavior is observed for the second pulse (100 % difficulty),
though in this case the number of SCRs is higher due to the
increased difficulty level.

Closed-loop results (phase 2) for the P controller with
low and high values of the proportional gain kP and high
forward gain kF are shown in Fig. 4b–c. High value of kP

lead to larger changes in game difficulty in response to the
player’s arousal, which in turn leads to large oscillations in
arousal and game difficulty. In contrast, low values of kP lead
to fewer oscillations, which are likely to be more desirable
to the player, at the expense of increasing rise time, which
reduces the responsiveness of the system during gameplay
(an undesirable effect).

To address the issue of oscillations while maintaining
responsiveness (low rise time), we then evaluated a PID
controller in Eq. (4), which includes derivative and inte-
gral terms. The derivative term measures the instantaneous
slope of the error and dampens the response if the controlled
variable is oscillating rapidly. In contrast, the integral term
measures the accumulated error and eliminates the residual
steady state error. PID parameters (kP , kI , kD) were opti-
mized using the Zielger Nichols method [37], as described
in the Appendix. The PID simulation results are shown in
Fig. 4d. Comparing those against the P controller response
in Fig. 4b–c, we observe that the PID controller is able to
significantly dampen the oscillations in the system response.

6.2 Experimental results: open loop

Figure 5 shows experimental results for one subject during
phase 1 (open loop) under the speed-adaptation condition;
similar results (not shown) were observed for other subjects
in the study. Arousal, as measured by the #SC R30 index,
closely follows the step input in game difficulty and increases
in proportion to the magnitude of the change in difficulty.
These results are consistent with those in the simulation study

Fig. 5 Experimental results during the open-loop phase 1 (speed) for
one subject: (top) difficulty, (middle) raw EDA response, (bottom) aver-
age #SCRs over a 30-s sliding window

Fig. 6 Average SCR across all subjects during open-loop for the three
game mechanics at 50 and 100 % difficulty level (normalized by sub-
tracting baseline SCR at 0 % difficulty level)

of Fig. 4a, which suggests that Eqs. (1–4) may be a valid
model of the interplay between arousal and difficulty.

Next, we compared the effectiveness of the three game
mechanics in eliciting the desired physiological response
using three criteria: arousal (#SC R30), game effectiveness
(kF ), and rise time. Figure 6 shows the players’ arousal for
the three game mechanics at 50 and 100 % difficulty. The 0 %
response is not shown since the three mechanics are equiv-
alent at that level. Thus, we treat each player’s #SC R30 at
0 % as their physiological baseline and subtract it from their
#SC R30 at 50 and 100 % difficulty. The speed mechanics
elicited higher #SC R30 on average than steering and weather,
which suggests that speed adaptation is the most effective of
the three mechanics. However, whereas steering shows a lin-
ear increase in #SC R30 when going from 50 to 100 %, the
other two mechanics show saturation effects. This suggests
that there is a non-linear relationship between the difficulty
level in our percentage-scale and the player’s arousal. Steer-
ing also has higher variance in #SC R30 than the other two
mechanics. The most likely explanation for this result is the
nature of the steering adaptation. This adaptation introduces
abrupt changes in the steering that require immediate action
from the player, whereas the other two mechanics introduce
changes more gradually. Moreover, even during phases of
constant difficulty levels, players in the steering adaptation
group continue to experience periodic but random distur-
bances in the steering (with amplitude proportional to diffi-
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Table 2 Summary statistics from the experimental trials comparing the three game mechanics (weather, speed, and steering) with the proportional
control law

Condition Open-loop phase Closed-loop phase

kF (RMSE) Rise time (SD) in seconds Average #SCRs (SD) Mean squared error (SD)

Weather 1.76 (0.69) 38.8 (18.8) 3.22 (0.59) 2.92 (1.70)

Speed 2.6 (0.86) 35.5 (11.3) 4.6 (0.41) 2.75 (1.46)

Steering 1.99 (0.06) 40.3 (13.3) 3.8 (1.14) 2.91 (1.75)

Bold values indicate that the variable (speed) is significantly different from the other variables (weather and steering) in terms of the measured
quantities

culty); in contrast, players in the speed and weather condi-
tions do not experience noticeable changes in the game when
the difficulty level is fixed.

We also compared the three game mechanics in terms of
their game effectiveness, as measured by the parameter kF

in Eq. (1). For each game mechanics, we computed kF as
the slope of the #SC R30 data in Fig. 6 over the range 0–
100 %. Speed adaptation has the largest kF , indicating that
it is the most effective game mechanics, whereas weather is
the least effective. Finally, we also calculated the rise time
of #SC R30, measured as the time taken to reach the highest
peak in #SC R30 after a step in difficulty from 0 to 100 %. The
rise time can be a good indicator of responsiveness, lower
rise time indicating a swift response. Statistics for the rise
time across subjects for the three game mechanics, shown in
Table 2, indicate that the speed mechanics also provides the
fastest response (lowest rise time).

To assess the statistical significance of the results, we per-
formed a 2-way ANOVA, with game difficulty and game
mechanics as main effects, and #SC R30 as the depen-
dent variable. Both effects were statistically significant
F(2, 45) = 3.96, p < 0.05 and F(2, 45) = 26.5, p <

0.05, respectively; the interaction between effects was not
significant [F(4, 45) = 0.53, p > 0.05]. To compare the
three difficulty levels (0, 50, and 100 %) in their ability
to elicit NS.SCRs, we performed repeated measures 1-way
ANOVA (individually for each of the three game mechan-
ics). The ANOVA statistics indicate a statistically signifi-
cant difference among the three difficulty levels for speed
[F(5, 10) = 5.67, p < 0.05] and steering F(5, 10) =
3.43, p < 0.05), but not for weather F(5, 10) = 2.72, p >

0.05. We also performed 1-way ANOVA to compare the three
mechanics on the basis of rise times; F(2, 15) = 4.75, p <

0.05. Altogether, these results indicate that the effects of
game mechanics and difficulty levels are statistically signifi-
cant, and that speed is the most effective mechanics in terms
of modulating the arousal level of the player.

To assess inter-participant variability in NS.SCR trends
over the three difficulty levels, we performed Kendall’s τ

rank correlation test. Kendall’s τ is a non-parametric mea-
sure of the strength of monotonic associations between two

Fig. 7 Experimental results for the proportional controller during the
closed-loop phase 2 (speed) for one subject: (top) difficulty, (middle)
raw EDA response, (bottom) average #SCRs over a 30-s sliding window
with the target setpoint (dotted line)

variables. For speed and steering mechanics, we obtained
τ = 1 for all but one participant with respect to all other
participants. This indicates that the NS.SCR response fol-
lowed the trend SC R0 % < SC R50 % < SC R100 % for all
but one participant in both conditions. In the case of weather
mechanics the results were mixed with for 4 out of 6 partic-
ipants following this trend.

6.3 Experimental results: comparison of game mechanics
under proportional control (closed loop)

In closed-loop operation, the P controller manipulates the
game difficulty to maintain the player’s arousal level around
a setpoint, defined as the average #SC R30 from the open-loop
phase. Figure 7 shows the closed loop response (game diffi-
culty level, raw EDA, and #SC R30) for one subject playing
the game under the speed mechanics controlled by the pro-
portional controller. As the arousal of the player goes below
(above) the target setpoint, the proportional controller drives
the game difficulty higher (lower) so as to elicit the desired
response.

We used two metrics to evaluate the three game mechan-
ics in the closed-loop configuration: (1) arousal (#SC R30),
and (2) mean squared tracking error. From our earlier discus-
sion (see Sect. 4.1) a better game mechanics would result in
lower tracking errors as well as fewer oscillations around
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Table 3 Significance results (t test) for the three game mechanics in open-loop and closed-loop configurations (*p < 0.05)

Condition Open-loop Closed-loop

Rise time Average #SCRs Mean squared error

Speed – Weather t(5) = 2.51* t(5) = 2.89* t(5) = 3.69*

Speed – Steering t(5) = 3.67* t(5) = 2.14* t(5) = 0.76

Steering – Weather t(5) = 1.82 t(5) = 0.61 t(5) = 0.64

Table 4 Summary statistics from the experimental trials comparing proportional (P) and PID control of speed adaptation

Control law Average #SCRs (SD) Mean squared error (SD) Oscillations (SD)

PID 4.64 (0.56) 2.61 (1.53) 5.25 (3.09)

P 4.6 (0.41) 2.75 (1.46) 7.5 (2.57)

Bold values indicate that the particular control law (PID) is improves the system performance when compared to the other control law (P) in terms
of the measured quantities

the setpoint. Statistics for #SC R30 under the three game
mechanics are shown in Table 2. The speed mechanics has
the largest #SC R30 as well as the lowest standard devia-
tion (σ), whereas steering has the largest σ and weather has
the lowest #SC R30. These results are consistent with those
obtained in the open-loop phase, and again suggest that speed
is the most effective mechanics. A 1-way ANOVA (with
game mechanics as the factor) shows that this result is mar-
ginally significant;F(2, 15) = 3.47, p > 0.05. Finally, we
compared the tracking errors incurred by each controller in
terms of root mean squared error (MSE) between the setpoint
and the #SC R30 elicited from the player. As shown in Table
2, the speed mechanics had the lowest error (averaged across
subjects) when compared to the other two game mechanics.
However, a 1-way ANOVA shows that differences in MSE
are not statistically significant; F(2, 15) = 1.05, p > 0.05.

We also performed pairwise t-tests to compare the three
game mechanics in both open-loop and closed-loop configu-
rations; results are summarized in Table 3. The t-test statistics
indicate that the speed mechanics is significantly different
from the weather mechanics in both open-loop and closed-
loop configurations. When comparing speed with steering
jitter, the differences were significant for rise time and aver-
age # SCRs, but not for MSE. We did not observe statistically
significant differences between the steering and weather con-
ditions. These statistical results corroborate the results dis-
cussed earlier (Table 2).

6.4 Experimental results: comparison of P and PID
controllers under speed game mechanics (closed loop)

In the fourth and final experiment, we tested whether the
simulation results with a PID control law (see Sect. 6.1)
would also hold experimentally. As before, we tuned the PID
gains (kP , kI , kD) with the Zielger Nichols method [37]–
refer to the Appendix section. Figure 8 shows the closed-loop

Fig. 8 Experimental results for the PID controller during the closed-
loop phase 2 (speed) for one subject: (top) difficulty, (middle) raw EDA
response, (bottom) average #SCRs over a 30-s sliding window with the
target setpoint (dotted line)

response for one subject playing the game under PID control
of speed adaptation. Visual inspection of these results indi-
cates that, compared to those under proportional control–see
Fig. 8 system oscillations around the setpoint are dampened
and the error is reduced.

In a final step, we quantitatively compared the perfor-
mance of the P and PID control laws for game adaptation.
For this purpose, we used car speed as the game mechanics
because of its better performance on the closed-loop exper-
iments in Sect. 6.4. As before, we used arousal (#SC R30)

and tracking errors (MSE) as performance metrics, but also
included the number of oscillations, measured as the num-
ber of zero-crossings at the target setpoint in the #SC R30

response. Summary statistics are shown in Table 4. We per-
formed 1-way ANOVA analysis with controller type (P, PID)
as the factor and performance (#SC R30, MSE, oscillations)
as the dependent variables. In the case of #SC R30, dif-
ferences between the two controllers were not statistically
significant F(1, 8) = 1.02, p > 0.05; this result is to
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be expected since both controllers used the same adapta-
tion mechanism (speed). Comparison of the tracking errors
(MSE), however, shows a marginally significant difference
in favor of the PID controller F(1, 8) = 4.42, p > 0.05.
Finally, PID controller had fewer oscillations than the P
controller, and this difference was statistically significant
F(1, 8) = 5.4, p < 0.05. These results are consistent with
our simulation studies (Sect. 6.4) and corroborate the theo-
retical predictions of Table 1.

7 Discussion and future work

We have presented a theoretically-motivated approach for
the design and analysis of adaptive physiological games. The
approach is inspired by principles from classical control the-
ory, and in particular by the concept of negative feedback.
In contrast with previous studies, our model parameters are
not aimed at assessing the performance of a human operator.
Rather, these parameters provide a quantitative measure with
which different mechanics can be compared in the context of
a racing game, namely, in terms of how effectively they can
elicit a physiological response from the player.

To illustrate the model, we first performed simulation
studies in open-loop and closed-loop configurations. Find-
ings from these simulations were then corroborated experi-
mentally through user studies. These results suggest that the
model in Eqs. (1–4) can be used to analyze the sensitivity of
the system to its various components (e.g., controller, game
mechanics, physiological measures, etc.). As an example, a
designer interested in some other physiological variable (e.g.
EEG) may be able to incorporate the dynamic properties of
EEG into the model, study its effects, and design a suitable
controller.

During the design stage, we considered a number of
game mechanics including traction properties of the road/car,
aggressiveness of a competitor car (enemy AI), lag in con-
trols, and the visual appeal of the scenery. We chose weather
as an example of an ‘ambient’ modification that would
directly affect performance (i.e., by reducing visibility). In
contrast, steering jitter is an example of a disturbance that
induces frustration/loss of control, whereas speed is an exam-
ple of an intuitive manipulation. We chose these three game
mechanics for comparison because of their different impact
on gameplay and affective experience. Our experimental
results show that speed adaptation is more effective than the
other two mechanics. Specifically, speed mechanics elicited a
higher number of SCRs and the shortest rise times in an open-
loop configuration; it also had the lowest mean-squared-error
in a closed-loop configuration. These findings are consis-
tent with work by Min et al. [38] which studied the auto-
nomic response of car drivers as a function of the vehi-
cle’s speed. The authors found that sympathetic activation
depended highly on the speed as compared to the remaining

factors; this would explain why subjects in our experiments
had higher EDA on the speed condition –the skin is exclu-
sively innervated by the sympathetic nervous system.

An alternative explanation for our results may come from
studies on the relationship between perceived control and
arousal. As an example, Wise and Reeves [39] studied the
EDA of participants viewing a series of photographs. Partic-
ipants in the treatment group had control of when the next
picture would be presented; whereas participants in the con-
trol group did not have such control (the computer controlled
the display). Their results show that subjects in the treatment
group (those who had control) had higher levels of arousal,
as measured by their EDA. Thus, it is possible that, in our
study, participants in the speed condition displayed high EDA
because of their perceived sense of full control, whereas par-
ticipants in the jitter condition had little control over the ran-
dom disturbances in the steering.

While it is reasonable to assume that the relationship
between difficulty and arousal is monotonic, its particular
shape (e.g., linear, power, sigmoidal) depends largely on
the arousal measure being used, the game mechanics being
adapted, and the scale (i.e., logarithmic) of the parameters.
For simplicity, in Eq. (1) we assumed the two variables to be
linearly related. However, as discussed in Sect. 4.2, whereas
steering does show a linear increase in #SC R30 when going
from 50 to 100 % difficulty, the other two mechanics show
saturation effects. This suggests that there is a non-linear rela-
tionship between the difficulty level in our percentage-scale
and the player’s arousal.

7.1 Future work

In our experimental protocol, participants played the game
during a single session. This allowed us to estimate model
parameters (kF: game effectiveness; kP: backward propor-
tionality constant) once during the initial open-loop phase,
and maintain them constant during the subsequent closed-
loop phase. Additional work is required to test whether the
model holds across multiple sessions. This may require that
the parameters kF and kB be allowed to vary over time as
the player becomes more proficient. Similar strategies have
been suggested by Yannakakis et al. [17] to evolve games
over time with players’ increasing proficiency/experience.
Similarly, we used the same gains (kP, kI, kD) for all the par-
ticipants playing the game with the PID controller. To account
for player differences and for the expected improvement in
performance over time we would need to recalibrate the gain
values from the calibration phase individually/separately for
each participant. Our method was validated on a relatively
small sample size (25 participants). Extensive/longitudinal
trials would be required ascertain its statistical significance,
and clinical validity and reliability.
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Collisions between the player’s car and objects on the
shoulder of the track (i.e., guard rails, traffic signs) can occur
during gameplay. In the event of a collision, the player must
bring the car back on the track and resume driving. Colli-
sions can lead to startle or orienting responses, with the cor-
responding spike in skin conductance (i.e., an SCR). This in
turn causes the biofeedback control loop to reduce game dif-
ficulty, allowing the player to get back on the track. While at
present we don’t track collision events explicitly, this infor-
mation may be used to extract complementary information
from the EDA response, such as the latency or amplitude of
SCRs during startle or orienting responses. As an example,
declining SCR amplitudes with successive collisions may be
used as a measure of habituation.

To better quantify the players’ emotional experiences dur-
ing gameplay, additional physiological signals may be con-
sidered, such as heart rate variability (HRV) and breathing
rate. As suggested by Mandryk et al. [40], these physiologi-
cal signals can be transformed into arousal and valence and
mapped into emotional states relevant to video gameplay (e.g.
boredom, excitement, challenge, fun, frustration etc.). HRV
is particularly appealing since it can be computed from HR
monitors, which are low cost, can be worn inconspicuously
and, unlike EDA sensors, do not interfere with normal activ-
ities (e.g., grasping, typing). Arousal measures from EDA
and HRV may also be combined for added robustness. As an
example, Boucsein et al. [21] used a combination of NS.SCR
and HRV to filter out motion artifacts. Since these variables
change in opposite directions with increasing task demands
(e.g. NS.SCR increases while HRV decreases) simultaneous
increases in both variables can be dismissed as an indication
of motion artifacts rather than of changing task demands.

In our study we used proportional and PID controllers for
modulating the game parameters. Adding the integral and
derivative terms led to reduction in the error and oscillations.
The performance of other controller and their mappings with
individual game mechanics and physiological parameter also
needs to be studied. As an example, a reinforcement-learning
controller may learn a mapping between arousal level and
game difficulty and the optimal setpoint during gameplay.

Our methods may be used to design adaptive games that
help the player achieve and maintain a state of flow [41].
Flow is defined as the cognitive state which leads to deep
enjoyment; this is achieved by the right balance between the
player’s skill and difficulty of the activity [41]. By track-
ing difficulty levels, player performance, arousal level and
skill (i.e., through calibration), a control law may be used
to dynamically maintain a proper balance between difficulty
and skill level such that the player stays in flow. Our approach
is also relevant to applications beyond entertainment games.
As an example, biofeedback games may be modified for
teaching stress self-regulation. From a control-theoretic per-
spective, this would entail a simple modification: replacing

Fig. 9 Ziegler Nichols method for tuning a PID controller. Here, c(t)
is the unit step response and K is its steady state value

the negative feedback loop with a positive feedback, such
that the player is rewarded for staying calm and penalized
for displaying high arousal. As a result, the player must learn
to regulate their arousal response in the presence of a stres-
sor, a skill that may transfer better to real-life scenarios than
traditional relaxation techniques.
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8 Appendix

The Zielger Nichols method [37] provides plug-in formulas
for the PID gains by considering the unit-step input response
of the system. The unit step response generally follows an S-
shaped curve characterized by two parameters: the delay time
(L) and the time constant (T); see Fig. 9. Both parameters are
obtained by drawing a tangent line at the inflection point of
the unit-step response and determining the intersection of the
tangent with the axes. Once these parameters (L and T), have
been obtained, the PID gains can then be computed via the
plug-in expressions in Fig. 9. For our experiments, we used
the transition from 0 to 100 % difficulty in the open loop
phase as a unit step input. This gives rise to the S-shaped
NS.SCR response from which L/T and the PID gains are
estimated. Calculation according to see Fig. 9 leads to the
following PID gains: kP = 1.115; kI = 0.05; kD = 4.861.
These parameter settings were computed on the open-loop
experimental data in Sect. 4.2, and used both for the closed-
loop simulations and closed-loop experiments.
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