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Abstract—We present an adaptive biofeedback game that aims to 
maintain the player’s arousal level by monitoring physiological 
signals. We use concepts from control theory to model the 
interaction between human physiology and game difficulty 
during gameplay. We validate the approach on a car-racing game 
with real-time adaptive game mechanics. Specifically, we use car 
speed, road visibility, and steering jitter as three mechanisms to 
manipulate game difficulty. We propose quantitative measures to 
characterize the effectiveness of these game adaptations in 
manipulating the player’s arousal. For this purpose, we use 
electrodermal activity (EDA) as a physiological correlate of 
arousal. Experimental trials with 20 subjects in both open-loop 
(no feedback) and closed-loop (negative feedback) conditions 
show statistically significant differences among the three game 
mechanics in terms of their effectiveness. Specifically, 
manipulating car speed provides higher arousal levels than 
changing road visibility or vehicle steering. Finally, we discuss 
the theoretical and practical implications of our approach. 

Keywords—Physiological games, dynamic game balancing, control 
theory. 

 INTRODUCTION I.
Physiological sensors have garnered a great deal of attention 
in the gaming research community [1-5].  Many physiological 
variables are under autonomic control (i.e., involuntary), and 
therefore can provide objective measures of the player’s 
affective state [2]. As noted by Hettinger et al. [6] 
physiological sensors “open an additional channel of 
communication from the user to the computer, albeit a largely 
unconscious one”.  Thus, physiological sensors enable new 
forms of gameplay and new applications beyond 
entertainment; as an example, they may be used to improve 
engagement and immersion, to adjust game difficulty to the 
player’s skill level, and to develop game-like health 
interventions. 

To date, however, biofeedback games have not gained much 
popularity from the gaming community and are still mostly 
constrained to laboratory settings [1]. Part of the issue stems 
from the lack of a broadly accepted theory on how to assess 
game experience, which leads to a fragmentation of 
biofeedback game research. In turn, this makes assessment of 
game parameters much harder since computer games are 
complex systems where interaction occurs at multiple levels. 
In addition, mapping physiological signals to game difficulty 
levels is not trivial.  

In this work, we propose a general framework to model the 
process of game adaptation, with the explicit goal of 
maintaining a sustained level of arousal in the player. 
Borrowing concepts from control theory [9], we model the 

player as a dynamical system whose output (varying arousal 
levels) must follow an external setpoint (constant arousal). 
Specifically, the control law manipulates the game’s difficulty 
level so as to maintain a sustained arousal level, as measured 
by electrodermal activity (EDA). Our approach has several 
advantages.  First, it allows us to simulate the behavior of the 
system under different parameter settings, which can help 
guide the game development process. Second, the model 
provides a compact parameterization of the system, which 
facilitates the evaluation of different game mechanics. Finally, 
it provides objective measures of system performance (error, 
oscillation) that are complementary to subjective and 
observation-oriented measures often used in game evaluations.   

To validate our approach, we have developed an adaptive car-
racing game and characterized three different game-adaptation 
mechanics: visibility, steering, and speed.  Our evaluation 
consists of two steps. First, we test the system in an open-loop 
configuration; this allows us to calibrate the system to each 
individual player and evaluate the effectiveness of each game 
mechanics to bring about a change in the player’s physiology.  
Then we evaluate the system in a closed-loop configuration, 
where the game mechanics are modulated by a proportional 
feedback control law that maintains the player’s arousal 
around a desired setpoint.  

The rest of the paper is organized as follows.  Section II 
summarizes prior work on integrating physiological sensors 
with videogames.  Section III describes our modeling 
methodology based on control theory. Section V describes the 
adaptive videogame we developed to validate our model.  
Section VI presents results from simulation as well as user 
studies. Finally, section VII summarizes our findings and 
provides direction for future work. 

 RELATED WORK II.
The majority of approaches to dynamic difficulty adjustment 
(also known as dynamic game balancing) use the player’s 
performance on the game as the main measure of difficulty 
[7].  A classic example is the “rubber band” used in car-racing 
games (e.g., Mario Kart): players who fall behind in the race 
will encounter more bonuses (and fewer obstacles) than those 
who dominate the race. Using task performance is appealing 
because it can be integrated in the game without the need for 
additional hardware.  However, it is not task performance but 
the emotional experience of the player that is critical in 
gameplay [8].  For this reason, recent studies have explored 
the use of physiological measures as a way to capture facets of 
the player’s experience; these measures can then be 
transformed into control signals to adapt game parameters, in 
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what has been described as a biocybernetic loop [5, 9, 10]. 

Rani et al. [5] compared two approaches to adjust game 
difficulty: anxiety-based and performance-based. The first 
approach modulated game difficulty based on the player’s 
physiological state in a negative-feedback loop: high levels of 
anxiety reduced game difficulty, and vice versa. The second 
approach varied difficulty levels based on the player’s 
performance in a positive-feedback loop: high performance 
increased difficulty levels, and vice versa.  The authors found 
that anxiety-based feedback was more effective than 
performance-based feedback in challenging players, improved 
their performance, and lowered their anxiety. More recently, 
Kuikkaniemi et al. [11] explored two types of biofeedback 
(implicit vs. explicit) in a first-person shooter game. Implicit 
feedback occurs when the player is not aware that the game 
behavior is manipulated according to their physiological state; 
the player may sense the feedback mechanism but only at a 
subconscious level. In contrast, explicit biofeedback occurs 
when the player has conscious control over specific game 
dynamic. The authors discovered significant increases of 
immersion only in the explicit biofeedback condition. 

In recent years, videogames have been identified as potential 
learning tools [12] and have been combined with biofeedback 
techniques to treat specific medical conditions. Vilozni et al. 
[3] developed a videogame that taught breathing skills to 
children; in the game, the player controlled an animated critter 
with their breathing, measured with a spirometer.  Leahy et al. 
[13] developed a game to teach deep relaxation to patients 
with irritable bowel syndrome, a condition to which stress is a 
major contributor.  Several commercial systems employ 
similar “game-like” strategies to make biofeedback more 
intuitive.  In these systems, sensor signals are transformed into 
visually-pleasing graphics and animations.  While such 
elaborate biofeedback displays may be more appealing than 
visualizing raw sensor signals, much more could be gained if 
biofeedback was fully integrated into a dynamic game [4] . As 
an example, Sharry et al. [14] developed a racing game for 
children with anxiety disorders; in the game, the speed of the 
player’s avatar (a dragon) increases with the player’s ability to 
relax, as measured through EDA. However, only anecdotal 
evidence was provided to support the effectiveness of the 
approach. 

 CONTROL THEORETIC PARADIGM III.
We use concepts from classical control theory to model the 
process of adapting the videogame in response to the player’s 
arousal.  As illustrated in Fig. 1 (a), the basic building blocks 
of a control system are (i) the plant or system we wish to 
control, (ii) a sensor, which measures the state of the plant, 
and (iii) a controller, which provides an input to the plant so as 
to minimize the difference between desired (setpoint) and 
actual (measured) output. Control theory provides the 
mathematical tools to design the controller to meet specific 
performance criteria such as rise time (i.e., responsiveness) 
and damping (i.e., lack of oscillation). As an example, the 
controller may produce an output that is proportional to the 
measured error, to the derivative of this error (to provide 
damping), to the integral of the error (to reduce residual 
steady-state errors) or any combination of the three, leading to 

a PID (proportional-integral-derivative) control. 

Fig. 1 (b) shows the generic block diagram when applied to an 
adaptive physiological game.  In this case, the player is the 
“plant” whose output (arousal) we seek to maintain constant 
around a setpoint. The sensor in the feedback loop is the EDA 
sensor, which converts the player’s arousal into a measurable 
variable. Finally, the game-adaptation engine takes the 
deviation between desired and actual arousal level and 
modulates the game parameters to shape the future 
physiological response of the player. Thus, by choosing an 
appropriate setpoint and control law, such a feedback system 
can be used to elicit desired physiological response and/or 
performance levels [9]. 

The block diagram in Fig. 1 (b) is an example of a feedback 
system with a human in the loop. Although there is no well-
defined transfer function for the human [15], principles from 
classical control theory can guide us in designing the feedback 
controller, modeling the player-game interaction, and 
assessing the performance of the game mechanics.  To 
illustrate the benefits of our control-theoretic approach, 
consider the following simplified model:  

�(�) = �(� − 1) + ���(�) (1) 

�(�) = �(� − 1) − ���(�) (2) 
�(�) = �(�) − �	 (3) 

where �(�) ∈ [−1,1] is the game’s difficulty level at time �, 
�(�) ∈ [0,1] and �	 are the player’s measured EDA response1 
and desired response, respectively, and �(�)  is the error 
(difference between both).  

Eq. (1) is the plant model, and states that the player’s increase 
in EDA at time �  is proportional to the increase in game 
difficulty at the time; the forward proportionality constant �� 
captures the effectiveness of a particular game mechanics in 
shaping the player’s arousal level (larger values of ��  being 
better).  Eq. (2) is the controller model, which in this example 
is a proportional control law: the larger the error (difference 
between the setpoint and desired arousal) the larger the change 
in difficulty level, with the backward proportionality constant 
��  controlling how quickly the game difficulty will change. 
Large values of �� can reduce steady state errors quickly, but 
                                                           
1 As we will see in section IV.B, we use the number of skin conductance 
responses (SCRs) as the measure of electrodermal activity. 

 
Fig. 1. Block diagram of (a) a classical feedback control system, and 
(b) our adaptive physiological game. 
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can also result in large oscillations and even instability [10]. 

 SYSTEM OVERVIEW IV.
To validate our approach, we needed a videogame that would 
be intuitive, engaging, and amenable to adaptation.  From 
among the various game genres (e.g., strategy, role playing, 
action/adventure, sports, racing, shooter, fighter, arcade) [16]  
we decided to focus on car-racing games, because they are 
intuitive, easy to learn, highly dynamic, and enable multiple 
forms of adaptation.  For this purpose, we adapted an open-
source racing game [17] to incorporate physiological feedback 
from an EDA sensor –see  Fig. 1 (b).  In an initial study, 
however, players found it difficult to control both the speed 
and direction of the car simultaneously; thus, we modified the 
game such that the player was only required to control the 
steering.  This technique is called automatic acceleration and 
is commonly used in mobile racing games; the speed of the car 
at each position in the race track is different (e.g. high for 
straight lines, low for chicanes) but predetermined. We 
obtained a nominal speed profile for the circuit by recording 
10 game plays of a proficient player during a pilot study. 

A. Game adaptation mechanics 
We implemented three different types of game adaptation: 
weather, steering, and speed. In the weather modality, we 
manipulated weather conditions (rain, snow, and fog) to affect 
road visibility. At 0% inclement weather, the environment 
represented a clear sunny day with perfect visibility.  At 50% 
inclement weather, visibility was reduced to approximately 10 
meters.  Finally, at 100% inclement weather the driver had a 
visibility of approximately 2 meters. Visibility at other 
difficulty levels was linearly interpolated from those three 
points. As visibility decreases, the player is forced to rely on 
subtle peripheral cues (guard rails, road surface markings) to 
guide the car. Weather conditions did not affect vehicle 
dynamics (e.g., adherence to the road).  

In the steering modality, we introduced random disturbances 
to the steering direction in the form of additive noise. At 0% 
disturbance, no noise was added to the steering signal. At 50% 
disturbance, an angular jolt of 45 degrees was added to the 
player’s intended steering direction; at 100% disturbance, an 
angular jolt of 90 degrees was added. Angular disturbances at 
other % difficulty levels were linearly interpolated from those 
three points. The direction of the disturbance (clockwise or 

counter-clockwise) was chosen at random and the noise was 
added every 0.5 seconds. Manipulating the steering reduced 
the player’s sense of control. 

In the speed modality, we linearly manipulated the speed 
between 40-80 mph through a multiplicative factor on the 
predetermined speeds for the racing circuit, obtained from the 
pilot study. At 100% difficulty, the speed of the car followed 
the nominal speed for that location. At 50% speed, the 
velocity of the car was the nominal speed at that location 
reduced by a factor of 0.75.  Finally, at 0% speed, the velocity 
of the car was the nominal speed at that location reduced by a 
factor of 0.5. Manipulating the speed allowed us to adjust the 
game difficulty in a more intuitive way than altering weather 
conditions or the vehicle’s steering.  

B. Physiological measure of arousal 
We estimated the players’ arousal through their electrodermal 
activity (EDA).  EDA consists of two basic components, (i) a 
slowly changing offset known as the skin conductance level 
(SCL), and (ii) a series of transient peaks known as skin 
conductance responses (SCR) [18] that occur in reaction to 
startle events (i.e., an unexpected loud noise) but also 
spontaneously, in which case they are referred to as non-
specific (NS.SCR) [19].  SCLs are subject-dependent and can 
be influenced by the choice of electrode site and conductive 
gel.  Furthermore, in the presence of an SCR, measurement of 
the baseline SCL can be difficult.  In our pilot studies we 
found SCRs to be more responsive to the game dynamics than 
other physiological indicators including heart rate and heart 
rate variability (HRV). For these reasons, we used the number 
of SCRs within a fixed time window ( � = 30 sec )  as a 
measure of arousal. Fig. 2 (b) shows a typical EDA signal and 
the onset/offset of individual SCRs, detected by applying a 
threshold to the time derivative of the raw EDA signal. 

 EXPERIMENTAL PROTOCOL V.
We conducted experimental trials as part of an independent 
study with each participant playing a single (randomly 
assigned) game mechanics. We adopted this between-subjects 
design to avoid order effects such as learning or fatigue. 
Twenty students (age 18-33 years) participated in the study (7 
for weather, 7 for speed, and 6 for steering). We received 
approval from the Institutional Review Board prior to the 
study and consent from individual participant was received 
before the session. Participants played the game on a 22” LCD 
using a Logitech G27 racing wheel. No background music was 
played during the game other than car engine and event-
related sounds (e.g. collisions).  EDA was measured with a 
FlexComp Infinity (Thought Technology Ltd.) and streamed 
to the game engine via TCP/IP. Disposable AgCl electrodes 
were placed at the palmar and hypothenar eminences in palm 
of the player’s non-dominant hand [20]. To avoid 
motion/pressure artifacts, participants were instructed to use 
only the dominant hand to control the steering wheel.  

The experiments were conducted in two phases on the same 
day: open loop (phase 1) and closed loop (phase 2). During 
phase 1, users played the game with a particular mechanics 
(weather, speed or steering) at three different difficulty levels 

(a) 

 

(b) 

 
Fig. 2. (a) A participant playing the car-racing game.  
(b) EDA recording and detection of SCR events. 
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following the step sequence {0, 50, 0, 100, 0, 50, 0, 100, 0}%, 
each step lasting one minute. Blocks of 0% difficulty were 
interleaved to minimize rollover effects between the 50% and 
100% difficulty levels. The open-loop calibration session ran 
for 8 min. During this phase, the player’s EDA did not alter 
the game difficulty level. Instead, the purpose of phase 1 was 
to collect the player’s EDA response under a range of 
difficulty levels.  From here, we calculated the average 
number of SCRs over a 30-sec window (#���	) and used it 
as the target setpoint for the closed-loop experiments.  

During phase 2 (closed-loop), participants played the game for 
two 5-min sessions with a 2-min break.  During this time, 
game difficulty was adapted in response to the player’s EDA 
so as to maintain the setpoint (i.e., the average #���	 during 
phase 1) using the control law in eq. (2) with �� = 1. Phase 2 
allowed us to evaluate the effectiveness of the feedback loop 
in maintaining the player’s arousal level at the desired value.  

 RESULTS VI.

A. Simulation results 
First, we illustrate the behavior of the system by simulating 
the model in eqs. (1-3). Results for phase 1 (open loop) are 
shown in Fig. 3 (a) for two values of �� (low, high). Here, the 
game difficulty level is driven by the step sequence 
{0, 50, 0, 100, 0, 50, 0, 100, 0}%.  For high �� , the number of 
SCRs increases sharply upon the introduction of the first pulse 
(50% difficulty) and begins to decay once the difficulty level 
is brought back to 0%; for low �� the increase is more gradual 
and less pronounced.  A similar behavior is observed for the 
second pulse ( 100%  difficulty), though in this case the 
number of SCRs is higher due to the increased difficulty level.   

Results for phase 2 (closed loop) are shown in Fig. 3 (b-c) for 
low and high values of ��; here we kept �� constant to a high 
value (�� = 0.9).  High values of �� lead to larger changes in 
game difficulty in response to the player’s arousal, which in 
turn leads to fast oscillations in arousal and game difficulty.  
In contrast, low values of �� lead to fewer oscillations, which 
are likely to be more desirable to the player. Despite its 
simplicity, results from this simulation are remarkably close to 
those we observe experimentally, as we see next. 

B. Experimental results: open loop 

Fig. 4 shows experimental results for one subject during phase 
1 under speed adaptation; notice the striking resemblance with 
the #���	 trajectories in the simulation study of Fig. 3 (a).  
We assessed the effectiveness of the three game mechanics in 
eliciting the desired physiological response using three 
criteria: arousal (#���	), game effectiveness (k�), and rise 
time. Fig. 5 shows the players’ arousal for the three game 
mechanics at 50% and 100% difficulty. The 0% response is 
not shown since the three mechanics are equivalent at that 
level.  Thus, we treat each player’s #���	  at 0%  as their 
physiological baseline and subtract it from their #���	  at 
50%  and 100%  difficulty.   The speed mechanics elicited 
higher #���	 on average than steering and weather, which 
suggests that speed is the most effective of the three 
mechanics. However, steering shows the largest change in 
#���	  when going from 50%  to 100%  (it doubles) 
compared to the other two mechanics. This suggests that there 
is a non-linear relationship between the difficulty level in our 
percentage-scale and the challenge perceived by the player. 
Steering also has higher variance in #���	  than the other 
two mechanics. The most likely explanation for this result is 
the nature of the steering adaptation. This adaptation 
introduces abrupt changes in the steering that require 
immediate action from the player, whereas the other two 
mechanics introduce changes more gradually.  Moreover, even 
during phases of constant difficulty levels, players in the 
steering adaptation group continue to experience periodic but 
random disturbances in the steering (with amplitude 
proportional to difficulty); in contrast, players in the speed and 
weather conditions do not experience noticeable changes in 
the game when the difficulty level is fixed. 

We also compared the three game mechanics in terms of their 
game effectiveness parameter ��, as defined in eq. (1).  For 
each game mechanics, we computed ��  as the slope of the 

 
Fig. 3 (a) Open loop simulation for high vs. low game effectiveness 
(high �� = �. �; low �� = �. �). (b) Closed loop simulation for slow 
difficulty change (low �� = �. � ; �� = �. � ) and (c) Closed-loop 
simulation for fast difficulty change (high ��=�. �; ��=�. �). 

 
Fig. 4 Experimental results during the open-loop phase 1 (subject P1; 
speed): (top) difficulty, (middle) raw EDA response, (bottom) average 
#SCRs over a 30-second window. 

 
Fig. 5 Average SCR across all subjects during open-loop for the three 
game mechanics at 50% and 100% difficulty level (normalized by 
subtracting baseline SCR at 0% difficulty level). 
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#���	 data in Fig. 5 over the range 0-100%. As shown in 
Table 1, the speed condition has the largest ��, indicating that it 
is the most effective game mechanics, whereas weather is  
the least effective. Finally, we also calculated the rise time 
of #���	, measured as the time taken to reach the highest 
peak in #���	 after a step in difficulty from 0% to 100%. 
The rise time can be a good indicator of responsiveness, lower 
rise time indicating a swift response. Statistics for the rise time 
across subjects for the three game mechanics, shown in Table 1, 
indicate that the speed mechanics also provides the fastest 
response (lowest rise time).  

Finally, we performed a 2-way ANOVA, with game difficulty 
and game mechanics as main effects, and #���	  as the 
dependent variable. Both effects were statistically significant 
( � = 1.75 × 10��, 0.025 , respectively) and interact ( � =
0.716). We also performed 1-way ANOVA to compare the 
three mechanics on the basis of rise times ( � = 0.0178 ). 
Altogether, these results along with post-hoc tests indicate that 
the effects of game mechanics and difficulty levels are 
statistically significant, and that speed is the most effective 
mechanics in terms of modulating the player’s arousal level. 

C. Experimental results: closed loop 
In closed-loop operation, the controller manipulates the game 
difficulty to maintain the player’s arousal level around a 
setpoint, defined as the average #���	 from the open-loop 
phase. We use two metrics to evaluate the three game 
mechanics in a closed-loop configuration: (1) arousal 
(#���	), and (2) mean squared tracking error.  From our 
earlier discussion (see section VI.A) a better game mechanics 
would result in lower tracking errors as well as fewer 
oscillations around the setpoint.  

Statistics for #���	  under the three game mechanics are 
showed in Table 1. The speed mechanics has the largest 
#���	 as well as the lowest standard deviation (�), whereas 
steering has the largest � and weather has the lowest #���	. 
These results are consistent with those obtained in the open-

loop phase, and again suggest that speed is the most effective 
mechanics. A 1-way ANOVA (with game mechanics as the 
factor) shows that this result is marginally significant (� =
0.051). Finally, we compared the tracking errors incurred by 
each mechanics in terms of mean squared error (MSE) 
between the setpoint and the player’s #���	. As shown in 
Table 1, speed mechanics had the lowest error (averaged 
across subjects) when compared to the other two mechanics. 
However, a 1-way ANOVA shows that  
differences in MSE are not statistically significant ( � =
0.514). 

 DISCUSSION AND FUTURE WORK VII.
We have presented a theoretically-motivated approach for the 
design and analysis of adaptive physiological games.  The 
approach is inspired by principles from classical control 
theory, and in particular by the concept of negative feedback. 
In contrast with previous studies, our model parameters are 
not aimed at assessing the performance of a human operator. 
Rather, these parameters provide a quantitative measure with 
which different game mechanics can be compared in the 
context of a racing game, namely, in terms of how effectively 
they can elicit a physiological response from the player.  

To illustrate the model, we first performed simulation in open-
loop and closed-loop configurations.  Findings from these 
simulations were then corroborated experimentally through 
user studies.  These results suggest that our model can be used 
to analyze the sensitivity of other gaming systems to their 
various components (e.g., controller, primary and secondary 
mechanics, physiological measures, etc.). As an example, a 
designer interested in some other physiological variable (e.g. 
EEG) may be able to incorporate the dynamics of EEG into 
the model, study its effects, and design a suitable controller.  

Our experimental results show that speed adaptation is more 
effective than the other two mechanics. Specifically, speed 
mechanics elicited a higher number of SCRs and the smallest 
rise times in an open-loop configuration; it also had the lowest 
mean-squared-error in a closed-loop configuration. These 
findings are consistent with work by Min et al. [21] which 
studied the autonomic response of car drivers as a function of 
the vehicle’s speed. The authors found that sympathetic 
activation depended highly on the speed as compared to the 
remaining factors; this would explain why subjects in our 
experiments had higher EDA on the speed condition –the skin 
is exclusively innervated by the sympathetic nervous system.   

An alternative explanation for our results may come from 
studies on the relationship between perceived control and 
arousal.  As an example, Wise and Reeves [22] studied the 
EDA of participants viewing a series of photographs.  
Participants in the treatment group had control of when the 
next picture would be presented; whereas participants in the 
control group did not have such control (the computer 
controlled the display). Their results show that subjects in the 
treatment group (those who had control) had higher levels of 
arousal, as measured by their EDA.  Thus, it is possible that, 
in our study, participants in the speed condition displayed high 
EDA because of their perceived sense of full control, whereas 
participants in the jitter condition had little control over the 
random disturbances in the steering.   

Table 1.  Summary statistics from the experimental trials 

Condition 

Open-loop phase Closed-loop phase 

�� Rise time 
(SD) 

Average  
#SCRs (SD) 

Mean 
Squared 

Error (SD) 
Weather 1.76 38.8 (18.8) 3.22 (0.59) 2.92 (1.70) 
Speed 2.6 35.5 (11.3) 4.6 (0.41) 2.75 (1.46) 

Steering 1.99 40.3 (13.3) 3.8 (1.14) 2.91 (1.75) 

 
Fig. 6  Experimental results during the closed-loop phase 2 (subject 
P1; speed): (top) difficulty, (middle) raw EDA response, (bottom) 
average #SCRs over a 30-second window. 
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A. Future work 
In our experimental protocol, participants played the game 
during a single session. This allowed us to estimate model 
parameters (��: game effectiveness; ��:  backward 
proportionality constant) once during the initial open-loop 
phase, and maintain them constant during the subsequent 
closed-loop phase.  Additional work is required to test whether 
the model holds across multiple sessions. This may require 
that the parameters �� and �� be allowed to vary over time as 
the player becomes more proficient.  

Additional work will test the model with other physiological 
markers. HRV is particularly appealing since it can be 
computed from heart rate monitors that can be worn 
inconspicuously and do not interfere with daily activities (e.g., 
grasping, typing).  Arousal measures from EDA and HRV 
may also be combined for added robustness. As an example, 
Boucsein et al. [20] used a combination of NS.SCR and HRV 
to filter out motion artifacts. Since these variables change in 
opposite directions with increasing task demands (e.g. 
NS.SCR increases while HRV decreases) simultaneous 
increases in both variables can be dismissed as an indication 
of motion artifacts rather than of changing task demands.  

In our study we used a proportional controller for modulating 
the game parameters. Adding integral and derivative terms (a 
PID controller) may, theoretically, further reduce the rise time, 
and decrease oscillations and settling time. The performance 
of other controller and their mappings with individual game 
mechanics and physiological parameter also needs to be 
studied. Future work may also explore simultaneous 
adaptation of multiple game mechanics. When combined with 
multimodal physiological sensing, the resulting multiple-input 
multiple-output (MIMO) system may provide additional 
degrees of freedom to model the complex human-game 
interaction. 

Our methods may be used to design adaptive games that help  
the player achieve and maintain a state of flow [23].  Flow is 
defined as the cognitive state which leads to deep enjoyment; 
this is achieved by the right balance between the player’s skill 
and difficulty of the activity. By tracking difficulty levels, 
player performance, arousal level and skill (i.e., through 
calibration), a control law may be used to dynamically 
maintain a proper balance between difficulty and skill level 
such that the player stays in flow.  Our approach is also 
relevant to applications beyond entertainment.  As an example, 
biofeedback games may be modified for teaching stress self-
regulation. From a control-theoretic perspective, this would 
entail  replacing the negative feedback loop with a positive 
feedback, such that the player is rewarded for staying calm 
and penalized for displaying high arousal. As a result, the 
player must learn to regulate their arousal response in the 
presence of a stressor, a skill that may transfer better to real-
life scenarios than traditional relaxation techniques. 
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