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Abstract 

We present an articulatory-based method for real-time accent 

conversion using deep neural networks (DNN). The approach 

consists of two steps. First, we train a DNN articulatory 

synthesizer for the non-native speaker that estimates acoustics 

from contextualized articulatory gestures. Then we drive the 

DNN with articulatory gestures from a reference native 

speaker –mapped to the nonnative articulatory space via a 

Procrustes transform. We evaluate the accent-conversion 

performance of the DNN through a series of listening tests of 

intelligibility, voice identity and nonnative accentedness. 

Compared to a baseline method based on Gaussian mixture 

models, the DNN accent conversions were found to be 31% 

more intelligible, and were perceived more native-like in 68% 

of the cases. The DNN also succeeded in preserving the voice 

identity of the nonnative speaker.  

Index Terms: articulatory synthesis, deep neural networks, 

electromagnetic articulography, voice conversion 

1. Introduction 

Foreign accent conversion [1] seeks to transform utterances 

from a second language (L2) learner to sound native-like 

while preserving the voice quality of the learner. This 

transformation is achieved by transposing accent cues and 

voice-identity cues between the L2 utterance and that from a 

native (L1) speaker. Due to the difficulty in decoupling accent 

and voice-identity cues in the audio signal [2], however, 

acoustic-based methods for accent conversion often lead to 

utterances that appear to have been produced by a third 

speaker, i.e., a morph between the L1 and L2 speakers [1, 3]. 

To address this issue, in prior work [4, 5] we have shown that 

articulatory information (e.g., from electromagnetic 

articulography) may be used to decouple both sources of 

information to produce accent conversions.  

Shown in Figure 1, a typical articulatory-based method 

for accent conversion consists of building an articulatory 

synthesizer for the L2 speaker and driving it with normalized 

articulatory gestures from an L1 speaker. Several techniques 

may be used to build the articulatory synthesizer in a data-

driven fashion, including unit-selection synthesis [4] and 

statistical parametric synthesis [5].  Statistical techniques tend 

to be more effective since, unlike unit selection, they can 

operate with a small L2 corpus and can also interpolate L1 

phones that may not exist in the L2 corpus. Accordingly, in 

recent work [5] we have used the statistical parametric 

synthesizer of Toda et al. [6].  The approach consists of 

modeling the joint acoustic-articulatory distribution with a 

Gaussian mixture, then applying optimization to find the 

maximum-likelihood trajectory of acoustics features for a 

given articulatory sequence. This trajectory-optimization stage 

can substantially improve acoustic quality by reducing spectral 

discontinuities across adjacent frames, but requires that the 

entire utterance be processed at once, making it impractical for 

real-time conversion. 

Here we propose using a deep neural network (DNN) as 

an articulatory synthesizer to perform accent conversion in 

real-time.  The DNN uses a tapped-delay line to contextualize 

the input articulatory features in the time domain [7], in this 

way avoiding the costly trajectory optimization of the 

conventional GMM synthesizer. We compare the performance 

of the DNN articulatory synthesizer against a baseline GMM 

synthesizer [5] through a series of perceptual studies of 

acoustic quality, voice identity and native accentedness.  

The remainder of this paper is structured as follows. 

Section 2 reviews previous work on accent conversion. 

Section 3 describes the proposed DNN accent conversion 

technique and the GMM-based baseline method. Section 4 

discusses the experimental setup used to evaluate the DNN 

accent-conversion method. Results from the perceptual tests 

are presented in section 5. Finally, section 6 discusses our 

findings and proposes directions for future work.  

2. Related work 

Studies have shown that segmental cues are as important for 

accent perception as prosodic cues in the speech signal [1, 8]. 

As a step towards modifying both types of cues (segmental 

and prosodic), in early work  we used a vocoding technique to 

transpose linguistic (e.g., accent) and organic (i.e., voice 

identity) information from the vocal tract spectra of L1 and L2 

utterances [1]. Due to the complex interaction of linguistic and 

organic information in the acoustic domain, the results often 

led to the perception of a third speaker, one who shared voice 

quality characteristics from the L1 and L2 speaker. In later 

work [4] we suggested performing the accent conversion in 

the articulatory domain, where a voice-independent 

representation of linguistic gestures may be readily available. 

For this purpose, we used a unit-selection framework to 

replace the most accented portions of the L2 utterance with 

alternative segments from the L2 corpus based on their 

articulatory similarity to those from a reference L1 utterance. 

Although the approach avoided the third-speaker problem, the 

small corpus size and the lack of native-like units in the L2 

corpus led to unreliable synthesis quality.  

Unlike unit-selection, statistical parametric synthesizers 

have low-data requirements and the flexibility to  interpolate 

sounds for previously unseen articulatory gestures [6]. In 

 

Figure 1: Articulatory foreign accent conversion 
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recent work [5], we performed accent conversion by first 

building a GMM articulatory synthesizer for an L2 speaker, 

and then driving the synthesizer with articulatory trajectories 

from an L1 speaker. In our study, the articulatory data 

consisted of trajectories for a few critical articulators (e.g., 

tongue tip, lips) recorded via electromagnetic articulography 

(EMA). Through a series of subjective listening tests, we 

showed that driving the L2 synthesizer with L1 articulators led 

to more intelligible and native-like utterances than driving the 

L2 synthesizer with the original L2 articulators. As noted in 

the introduction, however, the method requires an expensive 

trajectory optimization stage to incorporate the dynamics of 

acoustic features, making it unsuitable for real-time 

conversion. Though low-delay implementation of this 

trajectory optimization step have been proposed [9, 10], this 

comes at a cost of lower-quality speech synthesis.   

To address this issue, recently we have also proposed a 

DNN-based articulatory synthesis technique for real-time 

synthesis that uses a tapped-delay line to contextualize the 

articulatory trajectory [7]. When compared to a baseline GMM 

articulatory synthesizer, the DNN reduced the Mel Cepstral 

distortion by 9.8% within speaker. In addition, perceptual 

evaluation through listening tests rated the DNN synthesis as 

more natural in 73% of the cases. Here, we examine whether 

the DNN articulatory synthesizer can also outperform the 

GMM articulatory synthesizer across speakers, as needed for 

accent conversion.  

3. Method 

Following our prior work [5], our overall approach for foreign 

accent conversion consists of four main stages –see Figure 2a: 

(1) articulatory normalization to map L1 EMA positions into 

L2 articulatory space, (2) DNN forward mapping to estimate 

L2 acoustic parameters from normalized L1 EMA positions, 

(3) scaling of the L1 pitch contour to match the pitch range of 

the L2 speaker, and (4) reconstructing the speech waveform 

via STRAIGHT synthesis. In what follows, we provide a brief 

overview of articulatory normalization, the DNN forward 

mappings and the baseline GMM forward mappings. For 

details on the pitch scaling and waveform generation, please 

refer to [5]  

3.1. Cross-speaker articulatory normalization 

A set of cross-speaker articulatory mappings are used to 

transform the EMA articulatory coordinates for the L1 speaker 

into the equivalent position in the L2 articulatory space. For 

this purpose, we build a set of Procrustes transforms for each 

flesh-point using pairs of corresponding articulatory 

landmarks from both the speakers. Following [11], we use 

phone-centroids of the EMA positions as the articulatory 

landmarks. Please refer to [5] for details.  

3.2. DNN-based forward mapping 

Given a trajectory of articulatory features 

   [           ] for an utterance, the DNN estimates the 

corresponding sequence of acoustic feature vectors    
 [        ]. As illustrated in Figure 2b, the DNN consists 

of an input layer, an output layer, and multiple layers of 

hidden units between them. In this particular topology, units in 

a layer are fully connected to units in the immediate layer 

above it, but there is no connection among units within a layer. 

The network contains a tapped-delay line to contextualize the 

input with features from past and future frames, resulting in 

the input vector    {     ⁄            ⁄  }, where    is 

the articulatory configuration at frame  , and   is the number 

of delay units. The DNN consists of Gaussian input units and 

binary hidden units, all units with sigmoid activation functions 

since the mapping is likely to be nonlinear.  

Training the DNN is a two stage process. First, a 

Gaussian-Bernoulli Boltzmann machine [12] is trained in an 

unsupervised fashion. Finally, a layer of output nodes (one 

node for each acoustic parameter) is added on top of the 

trained GDBM to form a DNN, which is then fine-tuned via 

back-propagation [13].  

3.3. Global variance adjustment 

Statistical mappings are known to over-smooth the acoustic 

trajectories, resulting in muffled sounds [14]. For this reason, 

GMM synthesizers generally incorporate the global variance 

(GV) of the acoustic feature vectors to reduce over-smoothing 

effects. To ensure a fair comparison with the baseline, we 

adjust the DNN estimated acoustic features as follows. Let the 

acoustic feature vector estimated by the DNN at frame   of the 

test utterance be   , then, the GV-adjusted feature vector  ̂  is 

given by: 

 ̂  (    )    (1) 

where   is the mean of the estimated acoustic feature vectors, 

and   is a diagonal matrix whose elements are the square roots 

of the ratios between the GVs for the natural and estimated 

trajectories. Calculating the exact values for   and   requires 

the estimated acoustic features for the entire utterance, which 

is not possible in real-time conversion. Therefore, we calculate 

these parameters       for all the training sentences and use 

their average value as an approximation during run-time. 

3.4. GMM-based forward mapping 

The baseline method [5] uses a GMM to estimate the 

maximum-likelihood trajectory of acoustic features    
 [        ] for a sequence of articulatory feature 

vectors    [           ] in a test utterance. The mapping 

considers the dynamics and the global variance of the acoustic 

features to estimate the trajectories of acoustics features  ̂ as:  

 ̂         
 

    |               (2) 

where   [                      ] is the time sequence 

of acoustic vectors (both static and dynamic) and      is the 

  

(a) (b) 

Figure 2: (a) DNN-based foreign accent conversion 

(PM: pitch modification) (b) Forward mapping using a 

DNN with a tapped-delay line input 
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GV of static acoustic feature vectors. The probability 

distribution of global variance         is modeled using a 

Gaussian distribution whereas the conditional probability 

   |   is inferred from the joint probability distribution 

function          modeled using Gaussian mixtures. For more 

details, please refer to [5, 6].  

4. Experimental 

We evaluated the DNN and GMM accent conversion models 

on an experimental corpus of parallel recordings of 

articulatory and audio signal from a native and a nonnative 

speaker of American English [4, 5] collected via 

Electromagnetic articulography (EMA). Both speakers 

recorded the same set of 344 sentences, out of which 294 

sentences were used for training the model and the remaining 

50 sentences were used only for testing. Six standard EMA 

pellets positions (tongue tip, tongue body, tongue dorsum, 

upper lip, lower lip, and lower jaw) were recorded at 200Hz. 

For each acoustic recording, we also extracted aperiodicity, 

fundamental frequency and the spectral envelop using 

STRAIGHT analysis [15]. STRAIGHT spectra were sampled 

at 200Hz to match the EMA recording and then converted into 

Mel frequency cepstral coefficients (MFCCs). MFCCs were 

extracted from the STRAIGHT spectrum by passing it through 

a Mel frequency filter bank (25 filters, 8 KHz cutoff) and then 

calculating discrete cosine transformation of these filter-bank 

energies. Following our prior work [5], the articulatory input 

feature vector consisted of the     coordinates for the six 

EMA pellets, fundamental frequency (log scale), frame energy 

        and nasality (binary feature extracted from the text 

transcript), while the acoustic feature vector consisted of 

         . The baseline GMMs were trained with 128 

mixture components (full covariance), whereas the DNNs 

contained 2 layers of 512 hidden nodes, and a 60ms tapped-

delay input (seven 10-ms frames: 3 previous, 1 current, 3 

future). These GMM and DNN structures were found to be 

suitable for forward mapping in our earlier studies [5, 7]. 

In order to evaluate the DNN-based accent conversion 

method, we synthesized test sentences in five experimental 

conditions –see Table 1: a) the proposed accent conversion 

method (     ), b) articulatory resynthesis by driving the 

DNN with L2 articulators (     ), c) accent conversion using 

the baseline GMM-based method        , d) MFCC 

compression of L2 speech (      ), and e) L1 utterances 

modified to match the vocal tract length [16] and pitch range 

of L2 (       ). We evaluated these conditions through a 

series of subjective listening tests on Mturk, Amazon’s crowd 

sourcing tool. To qualify for the study, participants were 

required to reside in the United States and pass a screening test 

that consisted of identifying various American English 

accents, including Northeast, Southern, and General 

American.  

5.  Results 

5.1. Intelligibility assessment 

In a first listening test we assessed the intelligibility of the 

proposed method        . We asked a group of participants 

(N=15) to transcribe 46 test utterances from      , and also 

rate the (subjective) intelligibility          of those utterances 

using a seven-point Likert scale (1: not intelligible at all, 7: 

extremely intelligible). From the transcription, we calculated 

word accuracy        as the ratio of the number of correctly-

identified words to the total number of words in the utterance. 

To compare the intelligibility of the proposed method against 

the baseline method, we used the same set of test sentences in 

our prior study [5]. Figure 3 shows the word accuracy and the 

subjective intelligibility ratings for the two accent-conversion 

models (      and      ). The DNN model had higher 

scores                         than the baseline GMM 

model                       , and the differences 

were statistically significant                    
                                 .  

5.2. Assessment of non-native accentedness 

In a second set of listening tests, we examined the ability of 

the DNN to reduce the perceived non-native accent of L2 

utterances. Following our previous work [5, 17], participants 

were asked to listen to pairs of utterances –one from the accent 

conversion         method, the other an articulatory 

resynthesis of the L2 utterance         for the same sentence, 

and select the most native-like. The articulatory resynthesis 

        was used instead of the original L2 recording to 

account for losses in acoustic quality due to the articulatory-

synthesis step in the accent conversion process, which are 

known to affect accent perception [1]. As before, we tested on 

the same subset of 15 test sentences in our prior study [5] so 

that the results could be compared. Participants listened to 30 

Table 1: Experimental conditions for the listening tests 

Experimental 
conditions 

Aperiodicity 
and energy 

Pitch Articulators Spectrum Forward-mapping 
model 

      L1 L1 scaled to L2 L1 mapped to L2 L2 forward mapping DNN 

      L2 L2 L2 L2 forward mapping DNN 

      L1 L1 scaled to L2 L1 mapped to L2 L2 forward mapping GMM 

       L2 L2 N/A L2 MFCC N/A 

        L1 L1 scaled to L2 N/A L1 warped to L2 N/A 
 

 
(a) (b) 

Figure 3: (a) Word accuracy and (b) subjective 

intelligibility ratings for       and       
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pairs of utterances (15             pairs and 15       
      pairs) presented in random order to account for 

ordering effects. As shown in Figure 4(a), participants rated 

      more native-like than L2 articulatory resynthesis in 

             of the sentences, which is significantly 

higher                     than the 50% chance level. 

This result shows that the proposed DNN-based method is 

effective in reducing perceived nonnative accents.  

Next, we compared the DNN accent conversion method 

against the baseline GMM method. For this purpose, a 

different group of participants listened to the 30 pairs of 

utterances (15             pairs and 15       
       pairs) presented in random order. Shown in Figure 

4(b),       utterances were rated as more native-like than 

      utterances in                of the sentences, 

which is also significantly higher than the 50% chance level 

                     .  

5.3. Voice identity assessment 

In a third and final listening experiment we evaluated if the 

DNN accent-conversion method was able to preserve the voice 

identity of the L2 speaker. For this purpose, participants were 

asked to compare the voice similarity between pairs of 

utterances, one from      , the other from        (MFCC 

compression of the original L2 recordings). As a sanity check 

[5], we also included pairs of utterances from        and 

       , the latter a simple guise of L1 utterances to match 

the pitch range and vocal tract length of the L2 speaker. 

Following [1, 5], utterances in each pair were linguistically 

different, and presentation order was randomized for 

conditions within each pair and for pairs of conditions. 

Participants (    ) rated 40 pairs, 20 from each group 

(             ,                ) randomly 

interleaved, and were asked to (1) determine if the utterances 

were from the same or a different speaker and (2) rate how 

confident they were in their assessment using a seven-point 

Likert scale (1: not confident at all, 3: somewhat confident, 5: 

quite a bit confident, and 7: extremely confident). The 

responses and their confidence ratings were then combined to 

form a voice similarity score       ranging from    

(extremely confident they are different speaker) to    

(extremely confident they are from the same speaker).  

Figure 5 shows the boxplot of average     between the 

pairs of experimental conditions. Participants were ‘quite’ 

confident (                  that the        and       

were from the same speaker, suggesting that the method 

successfully preserved the voice-identity of L2 speaker. The 

    was also comparable                      to the 

    between       and                           
reported for the baseline method in our prior study [5]. The 

participants were also ‘quite’ confident that (    
               the        and         were from different 

speakers, corroborating the finding in our prior study [5] that a 

simple guise of L1 utterances is not sufficient to match the 

voice of the L2 speaker. These findings suggest that the run-

time capabilities of the DNN did not compromise its ability to 

preserve the voice identity. 

6. Discussion 

We have presented an articulatory method for real-time 

modification of non-native accents. The approach uses a DNN 

with a 60ms tapped-delay input to map L2 articulatory 

trajectories into L2 acoustic observations (MFCCs).  Driving 

the DNN with articulatory trajectories recorded via EMA from 

an L1 speaker –normalized to the L2 articulatory space— 

results in speech that captures the linguistic gestures of the L1 

speaker and the voice quality of the L2 speaker.  

We evaluated the DNN accent-conversion method against 

the baseline GMM method in [5]. Accent conversions with the 

DNN were more intelligible and were perceived as more 

native-like than those using the GMM. A possible explanation 

for the difference in perceived accentedness between both 

methods is that acoustic quality affects the perception of 

nonnative accents (i.e., the lower the quality, the higher the 

non-native rating) [1]; although both methods use articulatory 

synthesis, a recent study [7] shows that the DNN tends to 

synthesize speech of higher acoustic quality than the GMM.  

Additional work is required to validate the approach 

beyond the specific L1-L2 speaker pair in our study, including 

nonnative speakers with different levels of proficiency. An 

interesting new resource in this regard is the Marquette 

University EMA Mandarin Accented English (EMA-MAE), 

which contains a large EMA corpus from multiple Mandarin 

L2 speakers of American English [18]. Future work may also 

extend this study using the richer articulatory representation 

provided by real-time magnetic resonance imaging (rt-MRI) 

[19]. In comparison to EMA, which only captures a few 

fleshpoints in the frontal oral cavity, rt-MRI provides 

information about the entire vocal tract, from lips to glottis, 

which may result in more intelligible and native-like accent 

conversions. Considering the cost of recording articulatory 

features, future studies may also evaluate the feasibility of 

using speaker-independent inverted articulatory features [20] 

as opposed to the measured EMA positions used in this study.   

  (a) (b) 

Figure 4: Subjective evaluation of accentedness. 

Participants selected the most native-like utterances (a) 

between       vs. L2 articulatory resynthesis, and (b) 

between       vs.       

 

Figure 5: Average pairwise voice similarity scores 

(*                scores are from [5])  
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