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Abstract 
We present a voice morphing strategy that can be used to 
generate a continuum of accent transformations between a 
foreign speaker and a native speaker.  The approach performs 
a cepstral decomposition of speech into spectral slope and 
spectral detail.  Accent conversions are then generated by 
combining the spectral slope of the foreign speaker with a 
morph of the spectral detail of the native speaker.  Spectral 
morphing is achieved by representing the spectral detail 
through pulse density modulation and averaging pulses in a 
pair-wise fashion.  The technique is validated on parallel 
recordings from two ARCTIC speakers using both objective 
and subjective measures of acoustic quality, speaker identity 
and foreign accent.   
Index Terms— voice morphing, accent conversion. 

1. Introduction 
During the last two decades, a few studies have suggested that 
it would be beneficial for second language (L2) learners to be 
able to listen to their own voices producing native-accented 
speech [1] The rationale behind this proposal is that removing 
information that is only related to the teacher’s voice quality 
makes it easier for learners to perceive differences between 
their accented utterances and their ideal accent-free 
counterparts. As a step towards this goal, we have developed 
voice-transformation techniques that can be used to synthesize 
native-accented utterances from their foreign-accented 
counterpart while preserving the speaker’s voice quality [1-3].   

In this paper, we propose a morphing technique that 
generates a continuum of accent-conversions between the 
learner’s productions and those of the teacher.  The technique 
works as follows.  First, we decompose the speech spectra into 
two components: one that captures broad spectral features (i.e., 
spectral slope), and a second one containing the spectral 
details (i.e., formant positions).  Then, we generate accent 
morphs by combining the learner’s broad spectra with a morph 
of the spectral detail of both speakers. Generating the morph 
requires that we establish correspondence between the two 
detailed spectra. This is achieved by encoding both spectra as 
a pulse density, and then averaging the position of 
corresponding pulses.  

Morphing accent conversions may serve as a behavioral 
shaping strategy in computer assisted pronunciation training. 
In behavioral shaping, the teacher asks the student to compare 
their utterances against their “best” previous efforts rather than 
against a separate standard [4]. Using a normative reference 
can be detrimental early in training, when the student’s 
utterances are very distant from the ideal pronunciation. 
Instead, by using a “floating” reference (i.e., one that adapts to 
the performance of the learner), the teacher can provide 
carefully graded evaluations of the learners’ performance and 
guide them towards the ultimate goal. Likewise, morphing 

accent conversions during the early stages of learning may be 
used to produce utterances that have less ambitious prosodic 
and segmental goals, slowly improving the reference by 
incorporating the best pronunciation of the learner and higher 
degrees of morphing towards the teacher’s productions.  

2. Related work 
Morphing techniques have been extensively used for face 
perception, but are challenging when applied on speech.  
Whereas facial landmarks are well defined and relatively easy 
to detect (eyes, mouth, jaw lines, etc.), spectral features in 
speech (i.e., formant frequencies) are difficult to measure and 
ill-defined in the case of unvoiced phones.  Rather than use 
formant-tracking techniques, which are notoriously unreliable, 
a number of methods have been proposed to generate morphs 
directly from the spectra of two speakers.  Slaney et al. [5] 
generate separate spectrograms for the pitch and broad spectral 
shape of a sound, and interpolate each channel separately by 
means of dynamic programming and harmonic alignment, 
respectively. Pfitzinger [6] also uses dynamic programming to 
find a frequency warp between two spectra, but in this case the 
warping is performed on the first-order derivative of the two 
LP spectral envelopes.  Ezzat et al. [7] also use the derivative 
of the two (log magnitude) spectra but instead employ a 
technique similar to optical flow to find a correspondence 
between the two spectra.  More recently, Shiga [8] has 
proposed a method where spectral envelopes are encoded as a 
distribution of pulses (see Figure 2).  In this case, morphing 
can be performed by pairing individual pulses from the two 
spectra (according to their order) and then computing the 
weighted average of each pair.  This results in significant time 
savings as compared to previous methods based on dynamic 
programming or optical flow. An added advantage of pulse 
density coding is that, unlike all-pole models such as LPC, it 
can model spectral zeros accurately. 

Our work is related to the problem of voice conversion [9-
14].  However, voice conversion seeks to transform utterances 
from a speaker so they sound as if another speaker had 
produced them, whereas accent conversion seeks to transform 
only those features of an utterance that contribute to accent 
while maintaining those that carry the identity of the speaker. 
Only a handful of studies have been published on the subject 
of accent conversion. Yan et al. [15] proposed an accent-
synthesis method based on formant warping. First, the authors 
developed a formant tracker based on HMMs and LPC, and 
applied it to a corpus containing several regional English 
accents (British, Australian, and American). Analysis of the 
formant trajectories revealed systematic differences in the 
vowel formant space for the three regional accents. Second, 
the authors re-synthesized utterances by warping formants 
from a foreign accent onto the formants of a native accent; 
pitch-scale and time-scale modifications were also applied. An 
ABX test showed that 75% of the re-synthesized utterances 
were perceived as having the native accent. Huckvale and 
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Yanagisawa [16] used an English TTS system to simulate 
English-accented Japanese utterances; this was achieved by 
transcribing Japanese phonemes with their closest English 
counterparts. The authors then evaluated the intelligibility of a 
Japanese TTS against the English TTS, and against several 
prosodic and segmental transformations of the English TTS. 
Their results showed that both segmental and prosodic 
transformations are required to improve significantly the 
intelligibility of English-accented Japanese utterances.  

Our work differs from Yan et al. [15] in two respects. First, 
our method uses pulse coding to represent speech spectra, 
which makes it more robust than formant tracking, particularly 
for unvoiced segments. Second, we evaluate not only the 
accentedness but also the perceived speaker identity of the re-
synthesized speech. The latter is critical because a successful 
accent-conversion model should preserve the identity of the 
foreign-accented speaker.  In contrast with Huckvale and 
Yanagisawa [16], our study is performed on natural speech, 
and focuses on accentedness and identity rather than on 
intelligibility; as noted by Munro and Derwing [17], a strong 
foreign accent does not necessarily limit the intelligibility of 
the speaker. Finally, unlike these previous methods and our 
own prior work [1-3], the work presented here allows us to 
achieve different degrees of accent conversion by virtue of a 
morphing coefficient, as described next. 

3. Methods 

3.1. Morphing through pulse density modulation 
Our method for morphing accent conversion is based on the 
pulse density modulation (PDM) technique of Shiga [8].  The 
PDM technique employs a delta-sigma modulator to convert a 
log spectral envelope �(�), where � denotes frequency, into a 
pulse sequence �(�) = ���[�(�)] as follows: 

 �(�) = �(�) − 	
 �(� − 1) (1) 

 �(�) = �(�) − �(� − 1) (2) 

 �(�) = �����(�)� (3) 

with initial conditions �(1) = �(1) = �(1) and �(�) = 0; the 
term  	
 is the feedback gain of the delta-sigma modulator: 
	
 = ���(�).  In turn, the pulse sequence �(�) can be 
decoded back into a log spectral envelope  ��(�) =
�����[�(�)] through the discrete cosine transform (DCT): 

 �(�) = ���[�(�)] (4) 

 �(�) = 0   ∀  � > � (5) 

 ��(�) = �����[�(�)] × 	
 (6) 

which acts as a low-pass filter by truncating the DCT 
expansion with an appropriate cutoff (� = 100 in our case.)  
Thus, given a pair of spectral envelopes ��(�) and ��(�), a 
morphed spectral envelope can be computed by averaging the 
position of corresponding pulses in the two spectra: 

 ��(�) = ������(1 − �)���[��(�)]
+ ����[��(�)]� (7) 

where the morphing coefficient  � (0 ≤ � ≤ 1) can be used to 
generate a continuum of morphs between the two spectral 
envelopes ��(�) and ��(�). 

 
Figure 1: (a) Morphing accent conversion strategy.  
(DTW/DFW: dynamic time/frequency warping).  (b) 
Spectral slope �" (�) as a function of liftering cutoff 
# ∈ {1,2,3 … 9,10,12 … 20,25 … 50}.  Individual spectra 
have been shifted vertically for visualization purposes. 

3.2. Accent conversion through voice morphing 
Given parallel recordings from the learner ��(�) and the 
teacher ��(�), equation (7) produces a morph of both the 
identity and the accent of the two speakers.  In accent 
conversion, however, we seek to morph only the accent while 
preserving the learner’s identity.   For this purpose, prior to the 
PDM encoding in equations (1-3), each spectra �%(�) is 
separated into two components, �%"(�) carrying the broad 
spectral features (i.e., spectral slope) and �%&(�) carrying the 
spectral detail (i.e., formant positions).  This, again, is 
performed by liftering in the DCT domain as: 

 �%&(�) = �����������(�)� × '(�)� (8) 

 �%"(�) = �����������(�)� × �1 − '(�)�� (9) 

where '(�) are the liftering coefficients, defined by:  

 '(�) = *�/# 1 ≤ � ≤ #
1 � > #  (10) 

An accent morph �� (�) is then produced by combining 
the learner’s broad spectra ��"(�) with a morph of the spectral 
detail of both speakers ��& (�): 

�� (�) = ��"(�) + ��& (�) 
 

(11) 

��& (�) = �����-����[��&(�)]
+ (1 − �)���[��&(�)]. 

 

(12) 

Larger values of the liftering coefficient # in (10) ensure 
that increasing spectral detail is preserved in the learner’s 
broad envelope ��"(�) and that, likewise, equivalent spectral 
detail is discarded from the teacher’s spectral detail ��&(�).  
The overall accent-conversion process and liftering results for 
different values of # are illustrated in Figure 1. 
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Figure 2:  (a) Decomposition of the spectral envelope 
�(�) into global shape �" (�) and spectral detail �& (�).  
(b) Encoding of spectral detail �& (�) through pulse 
density modulation. 

4. Experimental validation 
The proposed method was evaluated on two speakers from the 
ARCTIC corpus [18]: ksp_indianmale, who was treated as the 
foreign-accented learner, and rms_usmale2, who was treated 
as the native-accented teacher. The STRAIGHT vocoder [19] 
was used to generate smooth spectrograms and resynthesize 
the resulting voice morphs.   Prior to performing the morphing 
accent conversions, learner utterances were time-aligned at the 
frame level (80ms windows, 1ms shift; default frame shift in 
STRAIGHT) to those of the teacher using dynamic time 
warping (DTW) and a conventional 39-dimensional feature 
vector (13 MFCCs, delta and delta-delta features) computed 
from the STRAIGHT spectrum.  To account for differences in 
vocal tract length, teacher utterances were then frequency 
warped to those of the target; a global warping function was 
obtained by applying DTW in the frequency domain [20] to 
100 sentences in ARCTIC’s “B” set. Finally, utterances were 
resynthesized using the teacher’s pitch contour shifted to the 
baseline of the learner. As a result of these steps, all 
subsequent morphs conformed to the timing and pitch 
dynamics of the teacher, but had the global frequency warp 
and pitch baseline of the learner.   

Morphing accent conversions were generated for 
parameter values  # ∈ {1,2,3 … 9,10,12,14 … 20,25,30 … 50} 
and � ∈ {0, 0.1,0.2 … 1}.  One hundred sentences from 
ARCTIC’s “A” set were synthesized for each of these 11�21 
combinations, and analyzed in terms of their acoustic quality, 
speaker identity and foreign accentedness.  Three objective 
measures shown in our earlier work [2] to correlate with 
listening tests were used for this purpose.  Namely, acoustic 
quality was estimated through the ITU-T recommendation 
P.563, speaker identity was estimated from a linear 
discriminant analysis (LDA) of natural utterances from the 
learner and the teacher, and foreign accent was assessed by the 
forced-alignment score (log-likelihood) of acoustic models 
trained on North American speakers using HTK; see [2]. 
These objective ratings were also verified through subjective 
listening tests on a subset of the 11�21 combinations.  

5. Results 

5.1. Objective measures 
Figure 3 shows the average performance of the morphing 
accent conversion in terms of the three objective measures.  

Acoustic quality improves for higher values of the liftering 
cutoff  # and low values of the morphing parameter �. This 
result can be explained as follows. As the value of # increases, 
additional spectral structure is retained for the learner’s broad 
envelope ��"(�).  As a result, the spectral detail �%&(�) 
becomes flatter for large #, which improves the PDM 
encoding (i.e., for a spectrum with a significant spectral slope 
most of the pulses will be placed at the lower frequencies).  
Overall, however, the result in Figure 3(a) shows that the 
acoustic quality of the morphed accent conversions remains at 
an estimated mean-opinion-score (MOS) above 4.7, which in 
our earlier study [2] corresponds to a perceived MOS of 4.1. 

Results from the speaker identity scores are shown in 
Figure 3(b) in terms of the ratio: 

7� = ∑ ∑ �:��;,%, <"� ?"⁄ − :��;,%, <@� ?@⁄ �%;
:(<", <@) (?" + ?@)/2⁄  

 

(13)

where :(∙) is the Euclidean metric, �;,% is the projection of 
acoustic frame i in utterance u onto the LDA solution for the 
two speakers, <", <@ are the average LDA projection for 
learner and teacher utterances, respectively, and ?", ?@ are 
their standard deviations.  Thus, ID values greater than 0 
indicate that the morph is closer to the learner than to the 
teacher, and vice versa.  As shown in Figure 3(b), the morphed 
accent conversions remain closer to the learner except for a 
small number of parameter combinations (large � and small 
#); the dashed line indicates the maximum-likelihood decision 
boundary between both speakers.  These results are to be 
expected since for large � the morph is dominated by the 
target speaker (the teacher) and for small # only the overall 
spectral slope of the source speaker (the learner) is preserved.   

Results from the accented measure are shown in Figure 
3(c) in terms of the HTK forced-alignment score: 

B�� = ∑ ∑ ��;,C − �;,D%E�C;
F;FC

  

 

(14) 

where �;,C is the score (log-likelihood) of phone p on utterance 
u, F; is the number of test utterances and FC is the size of the 
phone set �F; = 100; FC = 39 + �'�.  Subtraction of the 
silence score �;,D%E compensates for misalignment errors. As 
may be expected, large values of the morphing parameter � 
reduce the foreign accentedness.  In addition, the more 
information about the learner that is preserved in the spectral 
slope (i.e., by increasing the liftering cutoff #), the larger the 
morphing value will have to be in order to achieve a given 
accent score.  Comparison of Figure 3(b) and Figure 3(c) 
shows that the accent measure improves (i.e., morphs become 
more native) faster than the identity measure degrades (i.e., 
morphs become more like the teacher), which suggests that 
there is a “sweet spot” where foreign accent reduction can be 
achieved while preserving the identity of the learner.    

5.2. Subjective measures 
To verify these objective measures, we ran additional 
subjective studies on the five selected (�, #) pairs shown in 
Table 1 and Figure 3, which represent intermediate degrees of 
morphing: V1 and V5 being nearest to the learner and the 
teacher, respectively. For each condition, we transformed the 
same 10 sentences. Participants performed the following tests 
through Amazon’s Mechanical Turk: 
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� Accent – 10 subjects rated the accentedness of 50 
utterances (5 conditions, 10 sentences) using a 7-point 
scale (0=not at all accented; 2=slightly; 4=quite a bit; 
6=extremely).  Subjects had to qualify for this test by 
passing a dialect identification test, which only native 
speakers of American English are likely to complete. 

� Quality – 10 subjects rated the quality of the same 50 
utterances using a 5-point MOS (1=bad, 2=poor, 3=fair, 
4=good, 5=excellent). 

� Identity – 10 subjects participated in a forced choice test. 
They listened to two pairs of utterances; each pair 
consisted of V1 or V5, a separating beep, and one of the 
intermediate voices (V2-V4).  Subjects were asked to 
select the pair whose voices were more different from 
each other. The order of presentation was random, and 
utterances were time-reversed so subjects focused on the 
physiological components of the voices [2]. Identity 
scores were calculated as the fraction of times that a 
given voice was perceived to be closer to V1. 

Subjective ratings were consistent with the corresponding 
objective measures. Accent ratings decrease monotonically 
through the sequence (V1-V5) and the perceived accent drops 
suddenly at V3 near a similar drop-off in Figure 3. Quality 
tended to decrease with #, as predicted by the objective 
measure.  Due to the design of the test, no identity score is 
available for V1 or V5. The intermediate voices were 
considered closer to the learner than to the teacher, and the 
order of similarity agrees with the objective measures. 
Original and morphed utterances for ARTIC sentence “We 
have plenty of capital ourselves, and yet we want more” for the 
five conditions in the listening tests are available at   
http://research.cs.tamu.edu/prism/publications/is2013.zip.  

6. Discussion 
We have presented a method for foreign accent conversion 
that combines a cepstral decomposition of the spectral 
envelope and a morphing technique through pulse density 
modulation.  Given parallel recordings from a native speaker 
and a foreign speaker, we decompose the spectral envelope 
into its overall shape, which captures speaker-dependent cues 
(i.e. spectral slope), and its spectral detail, which captures 
linguistic content.  The critical step in the morphing process is 
matching peaks across two spectra. We address this issue by 
representing the spectral detail as a distribution of a large 
number of pulses. In this manner, morphing two spectra is 
equivalent to averaging the position of their pulses in a pair-
wise fashion.  The overall procedure contains two parameters: 
a liftering cutoff γ that determines the amount of information 
to be preserved in the foreign speaker’s spectral slope, and a 
morphing coefficient α that determines the degree of morphing 
between the spectral detail of both speakers.  

The procedure was evaluated on two ARCTIC speakers 
using objective and subjective measures of acoustic quality, 
speaker identity and foreign accent. The results indicate that 
there is a trade-off between quality, identity and accent.  
Higher quality and identity scores are obtained by retaining as 
much of the learner’s spectral information as possible (large γ 
and small α) at the expense of reducing accent scores. 
However, our results also show a region in parameter space 
where significant reductions in accent are obtained while 
preserving cues to the learner’s identity.  

Our approach preserves the pitch and overall vocal tract 
length of the learner, and assumes that speaker-dependent and 

linguistic cues in the spectral envelope can be separated 
through cepstral decomposition (i.e., spectral slope vs. spectral 
detail, respectively). While F0, vocal tract length and spectral 
slope are known to be good discriminator among speakers 
[21], additional acoustic cues from the learner’s voice could be 
captured and preserved before the morphing stage, such as 
jitter and shimmer [22] and fine structure in the speech signal 
[23].  Other features from the speaker recognition literature 
(see [24] for a recent review) may also be investigated while 
considering that our goal is synthesis rather than recognition.  
Future work may also investigate filtering techniques (i.e., 
head-related transfer functions) to reduce differences between 
speakers’ perception of self-produced speech and their speech 
recordings [25], which may become important in computer 
assisted pronunciation training. 
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Figure 3:  (a) Quality, (b) identity, and (c) accentedness of the 
conversions as a function of the liftering cutoff # and 
morphing coefficient �. Lighter color denotes desirable effects 
(e.g., high quality, learner identity, and native accent). Dashed 
line in (b) represents the maximum-likelihood boundary 
between both speakers, as measured by LDA. Circles in (a) 
indicate the five conditions used in the listening tests. 

Table 1. Subjective ratings of accent, quality and identity. 

(�, #) Accent Quality Learner’s ID 
V1 (0,50) 2.94 3.38 n/a 
V2 (0.3,30) 2.61 3.41 74% 
V3 (0.7,7) 0.40 3.26 69% 
V4 (0.8,3) 0.26 3.07 64% 
V5 (1,1) 0.14 2.56 n/a 
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