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Abstract—Training stress-prediction models is challenging due to the difficulty in reliably eliciting stress and relaxation responses in

participants. For example, a task intended to elicit a relaxation response (e.g., deep breathing) can have the opposite effect depending

on the participant’s appraisal of and familiarity with the exercise. Including such instances in a training set undermines the accuracy of

the resulting prediction model. This paper presents a technique, ReBreathe, to identify such instances based on respiratory patterns

and determine their accurate stress/relax labels. We compared this relabeling approach against two labeling techniques: 1) nominal

labels obtained from the experimental protocol and 2) labels obtained from subjective assessments. We then trained generalized

estimating equation regression models to predict the resulting stress/relax labels from measures of heart rate variability and

electrodermal activity. Training the model using protocol labels achieved a classification rate of 0.53 on participants not included in the

training set. Relabeling the exercises based on each participant’s subjective ratings increased classification rates but only marginally

(0.61). In contrast, relabeling the exercises based on respiratory patterns increased classification rates to 0.88, or a four-fold reduction

in error rates. These results illustrate the unreliability of protocol and subjective labels during stress/relax exercises and the potential

benefits of ReBreathe.

Index Terms—Physiological signals, stress prediction, deep breathing, training protocols

Ç

1 INTRODUCTION

TODAY’S fast-paced lifestyle exposes people to multiple
and omnipresent stressors that can have adverse

physiological effects on the human body [1], [2]. Effective
stress management involves understanding how the body
responds physiologically to stress and then learning how
to regulate better our responses. The broad availability of
wearable physiological sensors makes it feasible to monitor
physiological correlates of stress over longer periods to pre-
dict stress levels; thus enabling improved diagnosis and
early intervention [3]. Systems predicting stress from these
physiological variables have been tested in the lab setting
with some success [4], [5], [6], [7]. However the use of these
systems is still limited, as it is hard to classify user-specific
responses as either stressed or relaxed due to individual dif-
ferences in collected physiological variables.

In particular, the accuracy of a stress prediction model
depends greatly on being trained with correctly labeled,
user-specific instances of stressful or relaxing events.

When using protocol labels as ground truth, a premise is
made that all participants experience stress in activities
intended to induce stress and relaxation in activities
intended to induce relaxation; however this premise may
not always be valid due to individual differences. Stan-
dard activities that induce relaxation may, in some cases,
elicit stress [8], depending on the participant’s appraisal
of and familiarity with the exercise. In an earlier work [9],
we found significant variations in individual responses to
standard stressful and relaxing activities. These variations
illustrate the difficulty of the problem, both in terms of
designing stress and relaxation elicitation protocols, as
well as in taking these labels at face value. Self-reporting
is typically used to qualify individual perceived stress,
but it can be unreliable as it is a subjective measure [10].
The absence of a reliable ground truth to label stress
states [7], necessitates an alternative methodology to iden-
tify accurate labels (i.e., stress/relax) for the activities in
training protocols.

In this paper, we propose a calibration protocol,
ReBreathe, which uses respiratory data to provide user-spe-
cific label correction for relaxation and stress. This correc-
tion can then be used to calibrate ambulatory stress
prediction systems. Deep breathing, a proven relaxation
technique [11], [12], [13], is included in ReBreathe to elicit
relaxation in the participants. Our approach consists of
using respiratory data to determine if participants adhere to
a prescribed rate of six breaths per minute (hence relax) and
relabeling the deep-breathing exercises as stress/relax
accordingly. ReBreathe thus provides a relaxation reference
[11], [12], [13] that takes into account individual variations
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by determining whether participants perform deep breath-
ing correctly to relax during these activities.

To validate ReBreathe, we conducted a series of experi-
ments in which participants completed a calibration protocol
consisting of various short-term stress-inducing activities
alternated with repeated brief deep-breathing exercises. The
goal of the experiments was to determine the physiological
manifestation of short-term stress-inducing activities, not
those of chronic stress. Throughout the experiments, we
recorded the participants’ physiological data via a wearable
sensor system [3] and collected subjective ratings of stress
levels via a questionnaire.We then compared the accuracy of
our respiratory-based relabeling approach against the stan-
dard approaches used in the literature: 1) protocol-based
labels and 2) labels obtained from self-reported subjective
scores. Namely, we used the respiratory-based and the
two standard labels each to train three corresponding
generalized estimating equation (GEE) regression models
using only heart rate variability (HRV) and electrodermal
activity (EDA) features as independent variables. We imple-
mented GEE regression models due to the repeated nature
of the activities in ReBreathe. Respiratory features were uti-
lized only for calibration in ReBreathe and not in the short-
term stress prediction model. Our results indicate that
relabeling deep breathing activities based on the partic-
ipants’ respiratory performance provided higher classi-
fication results with the GEE model when compared to
results frommodels developed using the two standard label-
ling approaches.

The paper is organized as follows. Section 2 contains a
brief overview of the need for the study and a summary of
prior work in the area. Section 3 presents the three labeling
approaches evaluated in this study as well as the experi-
mental protocol and wireless sensor system used to collect
physiological data. Section 4 discusses the collected physio-
logical features and results of the GEE stress/relax prediction
model. In the end, Section 5 contains a discussion of results
and conclusions drawn.

2 BACKGROUND

Stress arises from the reaction of the body to outside chal-
lenges, either physical or psychological. Lifestyle-related
psychological stressors can be pervasive and persistent for
long periods. This prolonged stress can be detrimental to
health resulting in digestion and sleep disorders, obesity,
cardiovascular diseases, immune system impairment, and
psychological problems [14]. The World Health Organiza-
tion declared stress the second most common health issue in
the European Union, affecting one third of the employed
population [15]. In Great Britain, 40 percent of the population
has experienced health issues due towork-related stress [16],
and more than 50 percent of the United States population
suffers from the stress of balancingwork and family life [17].

2.1 Assessment of Stress

The concept of stress, as first proposed by Selye in 1936, is
now well known, though the author himself struggled
unsuccessfully to find a satisfactory definition of stress due
to its subjective nature [18]. As perceived stress can be both
physical and psychological, assessing the stress level

experienced by an individual is non-trivial. Though, it is pos-
sible to measure the physiological response to stress (e.g.,
heart rate, respiration, and cortisol), the impact of stress
on these measures can vary considerably due to individual
differences. Moreover, self-reporting scores [19], which pro-
vide a subjective assessment of the individual level of per-
ceived stress, may also prove inaccurate due to differences in
perceptions, participants’ inability to recall the various activ-
ities, or their eagerness to adjust their responses to please the
experimenter [20]. The association between physiological
measures and subjective measures of chronic/acute stress
has been well reported [21], [22], however its relationship
with subjective measures of short-term stress is inconsistent
and less significant [23], [24]. As the goal of wearable stress
monitoring devices is to track the adverse effects of short-
term stressors to prevent chronic/acute stress, the accurate
quantification of short-term stress levels is vital.

2.2 Physiological Response to Stress

The response to stress is mediated by the activation of the
sympathetic nervous system (SNS), one of the two branches
of the autonomic nervous system (ANS) [25]. Another branch
of the ANS, the parasympathetic nervous system (PNS),
works in the opposite fashion, conserving energy. A number
of physiological changes, including increased heart rate,
pupil dilation, irregular breathing, increased electrodermal
activity, and muscle tension, are recognized as reliable indi-
ces of SNS stimuli and stress [2]. All of these signals can be
observed using wearable sensors [3]. Heart rate variability
(i.e., variations in the beat-to-beat interval) indicates how
well the ANSmaintains equilibrium in the body. High values
of HRV indicate that the SNS and PNS are working in proper
balance as the person is in a relaxed state, whereas low HRV
indicates that the SNS tone is dominant. As the SNS influence
augments due to stress, the breathing rate also increases and
becomes irregular [26]. Stress also affects respiratory sinus
arrhythmia (RSA), a naturally occurring modulation of heart
rate at the frequency of breathing that minimizes the work
done by the heart [27]. Psychological stress influences the
interaction of respiration and heart rate, disrupting the coher-
ent oscillations of RSA, which in turn impacts HRV [28]. EDA
reflects variations in electrical conduction of skin caused by
perspiration occurring as a reaction to physiological and psy-
chological arousal [29]. Respiratory parameters have been
used in psychophysiology to index the effects of stress and
emotion [30], [31] as psychological distress generally leads to
increases in respiration rate [30] and minute volume, and a
shift from abdominal to thoracic breathing [32].

2.3 Deep Breathing

A number of techniques have been applied to combat stress,
including deep breathing, biofeedback, guided imagery,
progressive muscle relaxation, cognitive behavioral ther-
apy, and mindfulness-based stress reduction [33], [34].
Deep breathing is the cornerstone of all these techniques as
it is effective in regulating ANS after acute stressful activi-
ties if performed correctly [12]; using the diaphragmatic
muscles for breathing shifts the ANS towards the parasym-
pathetic tone and thus induces relaxation [35]. Slow and
deep breathing has also been found to lead to increases in
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RSA and consequently HRV due to improvements in the
synchronization between respiration and cardiac activity
[28]. Deep breathing or diaphragmatic breathing is thus
widely recommended by health professionals to help
relieve stress [11], [36]. Successful deep breathing has been
proven to relax participants in a range of different studies:
healthy volunteers [12], [13], [37], pre-hypertensive women
[38], medical students [39], [40], nursing students [41], hos-
pital cleaners and bank employees [42], and athletes [43].

2.4 Physiological Stress Modelling

A number of devices have been developed to monitor physi-
ological signals with validated relationships to stress [44],
[45]. As the physiological response provides an incomplete
picture of the stress state of an individual, behavioral pat-
terns and self-reported psychological surveys have also been
monitored [46]. The vast majority of experimental work
done to validate these stress monitoring devices has been
restricted to a controlled set of activities within lab settings.
Stress labels are obtained based upon universal assumptions
for all participants (e.g., mental arithmetic tasks are stressful
and quiet time or listening to music relaxing for all partici-
pants [5], [47]. Models based on these labels include a Fish-
er’s Least Square Linear classifier using EDA, HRV, EMG,
and respiratory features [5], which reported accuracy rates
of 79 percent with a five-fold cross-validation. On the other
hand, a SVM classifier using blood volume pulse, EDA, skin
temperature, and pupil diameter [6] and a fuzzy logic based
system using only HR and EDA features [48] had higher
accuracy rates of over 90 percent. However research is
needed on developing models that account for variations in
individual stress responses to these activities and how they
impact the stress labels used. Further investigation is also
needed to analyze variations in data collected over long peri-
ods of time and their correlationwith stress [49].

In contrast with the extensive work done on physiologi-
cal monitoring of stress, work on developing robust calibra-
tion protocols is limited. Some studies [4], [47] incorporate a
calibration protocol consisting of a stress condition pre-
ceded by an initial rest period and followed by a recovery
period. The rest period is used to obtain a baseline and
assumes that participants are not stimulated in anticipation
of the subsequent task. However, the assumption that all
participants experience stress in a stress condition and relax
in the rest period may not always be valid due to the vari-
ability in individual responses to the stimuli. Alternatively,
other studies [46], [48], [49] use self-reported subjective
scores as ground truth for calibration activities containing a
range of stressors, which as discussed earlier can be inaccu-
rate. Furthermore, participants have difficulty assessing
stress levels of activities conducted in the lab, which, for
ethical reasons, are moderate. As a result, using protocol
labels or subjective ratings can be problematic for both of
these methods as they make invalid assumptions about the
predictability of the participants’ responses.

3 METHODS

3.1 Activity Labeling Approaches

A typical two-class supervised classification scenario
consists of a training set D ¼ ðxi; yiÞf gNi¼1 containing N

instances, where xi 2 Rd is a d-dimensional feature vector
(e.g., physiological responses) and yi 2 Y ¼ 0; 1f g is a label
(e.g., relaxed versus stressed). The task is to train a classifi-

cation function f 2 Rd ! Y that generalizes to unseen data.
However, due to the high level of individual variability, the
true labels yi are not known.

To identify the true labels yi, our proposed calibration
protocol, ReBreathe, involves using deep breathing (DB)
exercises as a baseline activity in addition to short-term
stress-inducing activities. We chose paced DB for two rea-
sons: 1) its effectiveness in stress regulation (if performed
correctly) is well-documented [12], [13], [37] and 2) it is pos-
sible to monitor breathing rate to determine if participants
are following the protocol. If respiratory data were used
directly without the DB protocol, it would be necessary to
collect data over a longer period together with subjective
data to identify relaxation periods.

We used ReBreathe to label the outcome of DB activities
on a participant-by-participant basis. We then compared
the obtained labels to those from the standard protocol-
based and subjective score-based labeling approaches by
employing the following three sets of labels to train three
corresponding GEE regression short-term stress prediction
models. Below are details of the labeling approaches:

3.1.1 Respiratory-Based Labeling (ReBreathe)

In this approach, we used respiratory data to assess whether
participants had been able to perform their DB activities
correctly. We then used this DB assessment to generate
stress/relax labels of each activity. Namely, DB activities in
which the power of the participants’ respiratory signal cor-
responded to the prescribed rate of 0.1 Hz were relabeled as
yi ¼ 1, (i.e., stressed) and the activities that did not were
kept as yi ¼ 0 (i.e., relaxed). We used the power of the par-
ticipants’ respiratory signal within the 0.04-0.15 Hz band as
a discriminating and label correction feature as participants
breathing at rates significantly different from the prescribed
0.1 Hz would result in a lower power in the 0.04-0.15 Hz
band. As ReBreathe was conducted in a lab setting, the data
contained limited motion artifacts. The breathing rate was
not controlled in the stressful activities in the protocol,
hence the labels for the stress-inducing activities were kept
at yi ¼ 1 (i.e., stressed). It is important the calibration proto-
col be conducted in a controlled environment, as in ambula-
tory settings the physiological data can become unreliable
due to motion artifacts.

3.1.2 Protocol-Based Labeling

In this approach, we implemented standard protocol-based
labelling [4], [5], [47]. We labeled stress levels according to
the characteristics of the activity, thus assuming that all par-
ticipants experienced stress while performing challenging
mental activities and experienced relaxation during DB. As
a result, all DB activities were labeled yi ¼ 0, and all stress-
inducing activities labeled yi ¼ 1.

3.1.3 Subjective-Based Labeling

In this approach, we labeled activities according to the sub-
jective scores provided by the participants [46], [49].
Namely, all (DB and stress) activities that received a
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subjective score higher than or equal to a threshold were
relabeled as yi ¼ 1, (i.e., stressed) and those that received
scores below the threshold were kept as yi ¼ 0 (i.e., relaxed).
The threshold used was the undecided (midpoint) subjec-
tive score of the seven-point Likert scale used by the partici-
pants (as detailed in Section 4.2).

3.2 Experimental Protocol

To validate ReBreathe, we conducted a series of experiments
in which participants completed various short-term stress-
inducing activities interleaved with repeated deep-breath-
ing exercises, as illustrated in Fig. 1. Repeated DB activities
were added to allow participants to recover from the stress-
inducing activities. At the start of the experiment, partici-
pants were asked to sit quietly for two minutes to provide
reference physiological signals. Next, participants were
instructed on how to perform DB at a pace of six breaths
per minute (0.1 Hz), i.e., to inhale for four seconds and then
exhale for six seconds. They were then allowed to practice
DB independently for five minutes. The participants per-
formed DB five more times during the experiment, each
time following a stress-inducing activity. The duration of
these DB activities was three minutes.

After completion of each activity, participants rated how
strongly they agreed or disagreed with the statement, ‘The
task I completed was extremely stressful’ using a Likert
scale as shown in Table 1; 1 corresponded to least stressful
and 7 to most stressful.

Following our prior work [3], we used five different
stress-inducing activities to reduce complacency due to rep-
etition and ensure participants were challenged across a
range of different skills:

- Memory search [50]: Participants memorized a set of
words on the screen in a random sequence and iden-
tified them amongst a number of confounders in a
limited time (5 min).

- Dual tracking [51]: Participants used a mouse to track
a moving target in a square box on the computer

screen and simultaneously left-click whenever one of
three target letters appeared on the screen (5min).

- Mirror tracing [52]: Participants manually traced a
pattern on paper visible not directly but only by
looking through a mirror placed at a strategic angle
(5 min).

- Stroop Test [53]: Participants had to click on one of
four buttons according to their ink color showing
one of four words (red, green, blue, yellow) written
in different ink colors to the button color (5 min), and

- Public speech [54]: Participants had to prepare a
short speech on a topic provided (3 min), deliver the
speech in front of a small audience (4 min), and
address the audience’s questions (3 min).

Twenty-five volunteers (ages 18-35 years) participated in
the study. Prior approval for the study had been obtained
from the TAMU Institutional Review Board. All of the vol-
unteers (10 female, 15 male) were examined by a medical
doctor to assess their suitability to participate in the study.
Based on the medical results, 22 healthy people were
selected for further experimentation. Three participants
were excluded by the clinician due to pre-existing medical
conditions that could either expose the participant to undue
risk or affect the physiological data collected during the
experiment (e.g., hypertension, diabetes). To identify if any
participants were chronic stress sufferers, they were asked
to complete the Perceived Stress Scale (PSS) before com-
mencing the experiment [55]. All participants recorded
scores less than 17 on the PSS, which is comparable to the
mean PSS score in the US for college students less than
25 years (16.78) and thus not indicative of chronic stress (i.e.
PSS ¼ 21þ) [56]. Studies were performed during the day
between 8:00 am-4:00 pm. Participants were briefed on the
experimental procedure to be followed and their written
consent to participate was obtained prior to the experiment.
The participants were not trained previously for any of the
activities including the DB ones.

We collected physiological data using a custom wearable
sensor system described in [3]; see Fig. 2. The system con-
sisted of a single chest strap incorporating 1) a heart rate
monitor strap (Polar� WearLinkþ�; Polar Electro Inc.) and
a pressure-based respiration sensor (SA9311M; Thought
Technology Ltd.); 2) small AgCl electrodes (E243; In Vivo
Metric Systems Corp.) on the middle and index finger of
the non-dominant hand to measure electrodermal activity
EDA; and 3) a holster unit consisting of a data processing

Fig. 1. Sequence of all the stress/relax activities performed by the partic-
ipants during the experiment.

TABLE 1
Likert Scale Used to Rate Each Activity

1 Disagree completely

2 Disagree strongly
3 Disagree slightly
4 Un-decided
5 Agree slightly
6 Agree strongly
7 Agree completely

Fig. 2. Picture of participant wearing the custom wearable sensor sys-
tem. The system consists of a holster unit, a wireless chest strap com-
bining HRM and respiration sensors and wireless EDA module.
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unit (MarvellTM PXA270 400 MHz, 64 MB RAM; Gumstix,
Inc.), a sensor hub (HRM receiver module—Polar
RMCM01, Polar Electro Inc.; wireless transceiver—EZ430-
RF2500, Texas Instruments Inc.), and a 3,000 mAh Lithium-
polymer battery. A wireless sensor network was developed
with the wireless nodes integrated into the chest band, EDA
sensor and holster unit. Each wireless node consisted of a
transceiver module, which created a star network topology
for wireless transmission between the sensors (node) and
the holster unit (hub).

Once the data was collected, we extracted several physio-
logical indices from the heart rate, respiratory and electro-
dermal activity sensors as follows:

- Heart rate variability: We selected three time-domain
measures (AVNN, RMSSD, PNNx) and one fre-
quency-domain measure (HRV-HF); see Table 2. In
the statistical family of pNNx, we selected x ¼ 25
msec instead of pNN50 as it has been shown to pro-
vide more potent estimates of cardiac vagal tone
[57]. The frequency domain analysis of HRV meas-
ures rhythmic oscillations of heart rate at different
frequencies [58].

- Respiration: We computed the respiratory low fre-
quency component (RESP-LF; 0.04–0.15 Hz) to
determine if participants followed the prescribed
respiratory rate of 0.1 Hz. We expected the partic-
ipants’ RESP-LF values to be high during the DB
activities as their breathing rate would be slow,
increasing dominance of the PNS.

- Electrodermal activity: Finally, we also extracted the
skin conductance response (SCR) as a measure of
EDA as it is a reliable indicator of stress [4] not influ-
enced by the respiratory response. SCR responds
rapidly to elicited stimuli, whereas skin conductance
level (SCL) reflects slower changes unrelated to the
stimuli indicative of a general level of arousal [59].
As in our experiment, the activities ranged from 3-5
minutes, we chose the phasic SCR instead of the

tonic SCL. We used a regularized least-squares de-
trending method to obtain the SCR; the aperiodic
trend is assumed to correspond to the SCL, and the
residual correspond to the SCR [3].

After dismissing activities with missing skin conduc-
tance or heart rate data in five participants due to incorrect
sensor mounting and/or wireless connectivity issues, we
were left with data from 15 participants. All the above fea-
tures were calculated using 90 s windows with an overlap
of 80 s. For each participant, the five features were normal-
ized within participants to zero mean and unit standard
deviation to remove most of the large across-participant
variability in the raw physiological data. Given the wide
range of EDA and HR values as well as the observed varia-
tion in the response to stressors, using raw values made it
difficult to compare data across participants.

3.3 GEE Regression Models

We developed GEE regression models to predict stress/relax
labels from the collected physiological variables. The
ground truths for these three models were the 1) protocol
based labels, 2) subjective based labels, and 3) ReBreathe
labels, respectively. Given respiration data was used for
ReBreathe relabeling, we did not include respiratory features
as a predictor variable; that is, the independent variables in
the GEE regression model only included features derived
HRV and EDA.

Generalized linear models (GLMs) are a standardmethod
used to fit regression models for data with binary outcomes.
They predict the probability of the occurrence of an event by
fitting data to a logit function [64]. Generalized estimating
equations were developed to extend the GLM to accommo-
date correlated data [65]. The prediction outcome Yi of our
GEE model is represented as a linear combination of bi

parameters and the predictor HRV and EDA variablesXi:

Logit ðYijXiÞ ¼ bo þ b1ðAVNNÞ þ b2ðpNN25Þ þ b3ðRMSSDÞ
þ b4ðHRV�HFÞ þ b5ðSCRÞ;

(1)

where bo is the intercept and bi the set of regression coeffi-
cients for the five predictor variables, computed using an iter-
ative approach to solve the set of estimating equations [65].

To test the three short-term stress prediction models,
we computed their predictive accuracy on the 15 partici-
pants using a Leave-One-Participant-Out cross validation.
Namely, the model was trained on 14 out of the 15 partici-
pants and then used to estimate the probability rstressof
the data for the remaining participant using Eq. (1). We
used the threshold rstress � 0:5 to label each activity as
stressful. This process was repeated for each participant.

4 RESULTS

4.1 Physiological Data

The data collected showed an inconsistency in the response
elicited in some participants during DB, thus questioning
the validity of protocol-based stress/relax labels for all partic-
ipants. Based on the respiratory behavior of the participants
during DB, we divided the participants into two groups:
group G1 containing nine participants who were unable to

TABLE 2
Brief Description of the Features Used for Analysis

Features Description Relationship

to stress

Average of N-N beats

AVNN [60], [61]

Time domain HRV—Mean of

the time interval between

normal sinus beats

#with stress

Root mean square of

successive difference

(msec) RMSSD [61]

Time domain HRV—exagger-

ated by irregular Heart rate

#with stress

%age difference between

adjacent NN intervals greater

than x msec pNNx [60], [61]

Time domain HRV—exagger-

ated by irregular heart rate

#with stress

HRV—High Frequency

Component HRV-HF [61]

Frequency domain

HRV—spectral power of

NN intervals of 0.15-0.4 Hz

#with stress

Respiration—Low Frequency

Component RESP-LF [62]

Spectral power of the signal

between 0.04-0.15 Hz

#with stress

Skin Conductance Response

SCR [63]

Mean of rapidly varying phasic

response

"with stress
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perform DB correctly (defined as having irregular breathing
rates during DB), and group G2 whose six participants were
able to breathe at the prescribed rate of six breaths per min-
ute for the majority of the DB period. As DB induces relaxa-
tion [12], the respiratory signal can be used to predict
relaxation [9]. Fig. 3a shows the raw respiratory signal dur-
ing consecutive DB and stress-inducing activities for a G1
participant in our study. The participant’s breathing rate is
irregular in both sets of activities (i.e. varies rapidly from
shallow to rapid within the acitivity) due to the participant’s
inability to perform DB at the prescribed rate of 0.1 Hz. In
contrast, Fig. 3d shows the respiration signal for a G2 partic-
ipant who was able to perform DB properly; the respiratory
signal is deep and regular during the DB activities due to a
decrease in SNS activation as compared to the signal in the
stressful activities.

The heart rate and EDA data also shows the same
variation between the responses of the two groups dur-
ing the DB activities. As seen in Fig. 3b, the G1 partici-
pant has an irregular heart rate pattern in both sets of
activities, indicative of stress even during the DB activi-
ties. In contrast, the heart rate of the G2 participant—see
Fig. 3e, shows high amplitude and periodicity during
the DB activities, indicating the participant was more
relaxed. The limited variation in the EDA values of the
G1 participant indicates the participant stayed stressed
during the DB activities—see Fig. 3c. A comparison of
Figs. 3c and 3f shows that the EDA of the G2 participant
has less prominent spikes (i.e. SCRs) than that of the G1
participant during the DB activities, indicating a higher
level of relaxation. Also, unlike the G1 participant, the
EDA values of the G2 participant show a strong decay
during both DB activities.

Table 3 presents the mean feature values from each
participant. The values clearly illustrate the differences
in the responses of the participants in each group. The
means of the HRV feature values for G1 are lower (red)
whereas the SCR means are higher (green); both of
which are indicative of higher stress. The mean SCR
and pNN25 of G1 is 5.4 and 0.55, whereas the mean
SCR and pNN25 of G2 is 4.3 and 2.58, respectively. The
RESP-LF values for G2 are also higher (green) than
those of G1. The standard deviations of the feature

values are given in Table 4; it shows that G1 participants
have the most variation in SCR values whereas G2 partici-
pants have the most variation in HRV-HF. Also, the val-
ues of G2 vary over a broader range compared to G1.

We used Principal Component Analysis (PCA) to reduce
the dimensionality of the feature matrix from six down to
two [9] with Fig. 4 showing a scatterplot of the first two
principal component scores of the response of the two
groups to the DB activities. An independent two-tailed,
paired, non-parametric Wilcoxon rank-sum t-test was
applied on the first component of the PCA to test the
hypothesis that there was no difference in the response of
the participants during the DB exercises. The t-test was
rejected with p ¼ 1:6� 10�17 indicating a significant differ-
ence between the two groups.

Fig. 3. (a) Respiration, (b) HRV and (c) EDA of one participant in Group 1 during DB (blue) and stress-inducing (red) activities. Plots (d), (e),
(f) correspond to a participant in Group 2.

TABLE 3
Mean Feature Values during the DB Activities�
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4.2 Subjective Scores

Participants provided a rating of stress (1-7 scale) after
completion of each activity where 1 corresponded to least
stressful, 4 to undecided and 7 to most stressful. The dis-
tribution of subjective scores given in Fig. 5a shows an
inconsistency in the participants’ response to the repeated
six DB activities, indicating either difficulties in recall or
that their perceived stress levels varied each time they
performed the same activity. 13 percent of the scores
were 5 and above (i.e. slightly to extremely stressful);
19 percent of the DB activities were scored 4 (undecided)
on the Likert scale. The median score of the DB activities
was 3. Only five of the participants recorded a score
of one (the lowest stress level); of these, only two
participants were from G2, a surprising result since G2
represents participants who were able to perform DB.
Likewise, nine participants had a median score at or

above three; four of these participants were from G2. Par-
ticipants S1, S2, and S4 rated the DB activities with scores
of 1 and S5 with a median score of 2; however, their phys-
iological mean feature values (Table 3) were more indica-
tive of stress. Participant S13 rated the DB activities with a
higher median score (4) than the stressful activities (3), S9
also rated the DB activities with median score of 4, how-
ever their physiological features values during the DB
activities as seen in Table 3 indicates that they were able
to DB and relax. Subjective scores for the five stress-induc-
ing activities—see Fig. 5b, also vary over a wide range.
40 percent of the stress activities were scored less than or
equal to the midpoint 4 (undecided) and the median score
for the stressful activities was 5. However, unlike relaxa-
tion activities where the same DB activities were repeated,
here participants performed a range of activities.

The absence of a clear threshold differentiating stress
and relax in the subjective scores made it difficult to con-
vert the seven-point Likert subjective scale to a binary
stress/relax (0/1) label, and specifically how to classify
the undecided score of 4. As discussed earlier, this data
suggests that some participants felt that the stress activi-
ties were not stressful and the DB activities were not
relaxing. Given that the median DB score was 3 and the
results in Section 4.1 showed that more than half of the
participants (G1) were unable to relax in the DB activi-
ties, we considered the undecided score of 4 as indica-
tive of stress. We thus labeled all activities that received
a subjective score of 4 (undecided) and above as stressful
(i.e. greater than the median score of 3) and those below
4 as relaxed.

Fig. 5. The range and median of the self-reported stress scores for (a) all
six deep breathing activities and (b) all five stress inducing activities
given by each of the participants for Group 1 (red) and Group 2 (blue).

TABLE 4
Standard Deviation of Features during the DB Activities�

Fig. 4. A scatterplot of the first two principal component scores of the six
features for all the participants during the DB activities [9].
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4.3 Re-Labeling Approaches

In a final step, we compared the three labeling approaches
presented in Section 3.1: ReBreathe re-labeling, subjective re-
labeling, and the original protocol labels. To perform respi-
ratory relabeling, we computed the value of RESP-LF (respi-
ratory power in the range 0.04-0.15 Hz) for intervals in the
baseline and DB training data when the respiratory signals
had a frequency of 0.1 Hz and used it as a threshold,
RESP � LF thresholdð Þ. Then, we relabeled each DB activ-
ity as yi ¼ 1 (stress-inducing) if its RESP-LF value was lower
than the threshold, i.e. RESP � LF DBið Þ < RESP �
LF thresholdð Þ. 54 percent of the 90 DB labels obtained from
15 participants were changed from the original protocol
based labels. To obtain the subjective-based labels, we rela-
beled as yi ¼ 1 (stress-inducing) any activity with score � 4
(i.e., the mid-point of the Likert scale used). From the origi-
nal protocol based labels, 33 percent of the DB labels and 34
percent of the stress labels were changed.

To better understand the effect of 1) subjective-based
relabeling of DB activities, 2) subjective-based relabeling of
stress-inducing activities, and 3) ReBreathe relabeling of DB
activities, we compared the resulting new labels against
the original protocol-based labels. Results are summarized
in Table 5. On average, ReBreathe relabeling of DB activities
for G2 participants (blue) led to the lowest number of
changes (1 label) while ReBreathe relabeling of the DB activi-
ties for G1 participants (red) led to the highest number of
changes (4.8 labels). This is consistent with the results in
Section 4.1, which showed that the majority of G1 partici-
pants were unable to maintain regular breathing rates. For
some G1 participants, ReBreathe resulted in changes to all
labels (max: 6), suggesting failure to perform DB in any of
the six DB activities. On the other hand, for some G2 partic-
ipants, ReBreathe did not change any of the DB labels
(min: 0), indicating participants were able to perform DB
correctly. On average, subjective-based relabeling of the DB
and stress-inducing activities changed 1-2 labels for both G1
and G2 participants (range: 0-6); this too is consistent with
the results presented in Fig. 5.

Given the absence of a reliable ground truth to compare
stress/relax labels, we also compared the average SCR and
change in SCR, DSCR ¼ SCR(stress)-SCR(relax), for G1 and
G2 participants (Table 5), as EDA is an independent mea-
sure of arousal not affected by respiration [66]. As seen, the

average SCR values of subjective-based relabeled relax and
stress activities were similar (G1: jDSCR j<10%; G2:
jDSCR j �1%). For G1 participants, SCR values were simi-
lar for relabeled DB (relax: 5.52; stress: 5.33) and stress-induc-
ing (relax: 5.63; stress: 5.82) activities, which indicates that
their arousal levels were not consistent with their subjective
stress/relax ratings. Both groups had participants with lower
SCR in activities relabeled as stress using subjective-based
relabeling (G1: min DSCR ¼ �40%; G2: min DSCR ¼ �12%).
These inconsistent results support our concern that subjec-
tive-based relabeling can be unreliable.

In contrast, ReBreathe resulted in a significantly higher
DSCR for G1 and G2 participants, 53 and 27 percent, respec-
tively. Morever, the average SCR value in activities relabeled
as stresswas higher than activities relabeled as relax for both
G1 (stress: 5.6; relax: 3.87) andG2 (stress: 5.2; relax: 4.07), which
indicates that participants were less aroused during relax
relabeled activities than stress relabeled activities. We con-
ducted a two-sided t-test to test the null hypothesis that the
average SCR of activities with resulting relax labels did not
differ from that of activities with stress labels in all three cate-
gories. Only ReBreathe relabeling showed a significant differ-
ence at the 0.01 level.

GEE models were then built to predict stress/relax labels
from the collected HRV/SCR features and validated
through a Leave-One-Participant-Out approach. The result-
ing beta coefficients, and the predictive values (p-values) for
the three models are presented in Table 6, show that pNN25
has the largest predictive value. All HRV coefficients have
negative polarity, as expected, given that HRV decreases
with increasing stress levels. Likewise, the SCR coefficient
has positive polarity, as EDA increases with stress. In a

TABLE 5
Comparison of Original Protocol-Based and New Labels

TABLE 6
GEE Regression Coefficients for the Three Models

Feature
Protocol based Subjective based ReBreathe based

coeff p-value coeff p-value coeff p-value

AVNN �0.0023 0.0017 �0.0023 0.0016 �0.0027 0.0014
PNN25 �0.4972 0.0007 �0.8183 0.0007 �1.483 0.0001
RMSSD �0.0171 0.0048 �0.0525 0.0025 �0.6015 0.0013
HRV HF �0.0123 0.0024 �0.0013 0.0041 �0.0042 0.0059
SCR 0.0477 0.0047 0.0376 0.0052 0.0014 0.0004
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two-sided t-test (H0: coefficient ¼ 0), all five coefficients for
all three models were significant at the 0.01 level.

The resulting accuracies of the GEE models are summa-
rized in Fig. 6. The protocol-based labels yield an average
classification rate of 53 percent. Relabeling the DB activities
based on the subjective-based labels increased the mean
classification of the resultant GEE model to 61 percent.
Using RESP- LF power to re-label the data resulted in a sig-
nificant

1

increase in the accuracy of the model to a rate of 88
percent. In all but two cases (participants 1, 3), ReBreathe
relabeling improved stress prediction as compared to using
protocol labels, in many cases bringing prediction rates
from chance levels (�50 percent) to near-perfect classifica-
tion (�100 percent). In contrast, using subjective scores for
re-labeling yielded inconsistent results across all partici-
pants. For four participants, the predictive accuracy fell to
even below chance level.

As respiration rate influences HRV [67] but does not
affect EDA [66], we also rebuilt the GEE model to predict
the ReBreathe labels using only SCR. The resultant model
accuracy dropped down to 72 percent, which, though lower
than the accuracy of the HRV þ SCR GEE model, was still
greater than the accuracy of models built using the proto-
col-based and subjective-based labels.

5 DISCUSSION AND CONCLUSIONS

5.1 Discussion of Results

We analyzed the physiological and subjective response of
participants to a series of deep breathing and stress-inducing
activities to validate the ground truth stress/relax labels
of activities used in training stress monitoring devices.
We found several contradictions between the participants’
responses and standard protocol-based labels, substantiat-
ing our concern that activities that induce stress or relaxation
may in some cases elicit the opposite response. As seen in
Table 3, not all the participants were able to relax during the
DB activities. This observation indicates that protocol-based
labels for DB relaxation activities may not be applicable

across all participants as the ability of DB to elicit relaxation
varies from participant to participant. As DB is an acquired
skill, not all participants (G1) were able to perform it cor-
rectly, which could be due to the short duration of the DB
activities in the protocol and/or absence of respiratory bio-
feedback. Given the correspondence between DB and stress
state (i.e., stress/relax), the results also show that respiratory
data can be used to determine if participants are able to per-
form DB properly and, as a result, achieve relaxation. This
difference in participant response to DB is also reflected in
their resulting ReBreathe labels; more than half of the DB
activities were relabeled as stress with some participants
staying stressed throughout the protocol. The SCR values
(arousal level) for DB activities relabeled as stresswas signifi-
cantly different to that of DB activities relabeled as relax
across all participants (Table 5).

The subjective scores (Fig. 5) provided by the partici-
pants were also not consistent with their physiological data
as presented in Table 3. These inconsistencies indicate that
perceived stress scores do not necessarily correspond to the
physiological changes; possibly due to the participants’
unfamiliarity with deep breathing. This lack of consistency
makes subjective scores unreliable markers to qualify indi-
vidual stress perception in our protocol. The results in
Table 5 support these inconsistencies, where there was min-
imal difference in arousal levels (SCR) between subjective-
based relabeled stress and relax activities. Neither the subjec-
tive labels obtained from participants’ perceived scores
nor the protocol-based labels agreed with the resultant
ReBreathe labels. Similarly, some of the participants did not
perceive the stress-inducing activities as being stressful,
providing subjective scores as low as 1, possibly due to their
unfamiliarity with these activities. Though self-reported
stress levels are often used to infer the psychological impact
of stress on individuals, these results show that due to their
subjective nature, they cannot be generalized both within
and across participants.

Results from the physiological measurements and sub-
jective scores put into question the assumptions used in
standard protocol-based labeling (i.e., that DB elicits a
state of relaxation for all participants) and subjective-
based labeling (i.e., self-reporting accurately qualifies indi-
vidual stress perception). Instead, the high variability
within and between individuals suggests that protocol-
based and subjective-score based labels cannot be used to
train stress detection models, and support the need for
relabeling. The accuracy of GEE models trained using
labels obtained with ReBreathe was 35 and 27 percent better
than accuracies obtained with models developed using
standard nominal labels and subjective stress scores,
respectively. As respiration rate influences HRV [67],
relabeling with respiration improves the accuracy of the
stress prediction model. EDA, on the other hand, provides
an independent measure of arousal and has been shown to
only co-vary with respiration, not controlled by respiration
[66]. Our results indicate that the labels assigned to DB
activities need to be validated to ensure participants are
relaxed and not stressed, before they can be used to train
an accurate stress prediction model.

Inducing relaxation in individuals is more difficult
than inducing stress [11]. It is possible that the short

Fig. 6. Classification rate of leave-one-participant-out cross validation of
GEE model using protocol-based, subjective-based and ReBreathe
labels for model training.

1. A two-tailed, paired, non-parametric Wilcoxon rank-sum t-test
was performed to compare the respiration based model to the protocol
and subjective score based models (H0: the two models have the same
error rate). The hypothesis was rejected in both cases with a p-value <
0.05.
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duration of the DB activities between the stressful activi-
ties in our protocol was not a sufficient period for relaxa-
tion to be induced in some of the participants. Most
guidelines and studies looking at the impact of DB ask
users to perform these exercises for 10 minutes and lon-
ger over multiple sessions (e.g., [11], [37], [40]). Further-
more, the absence of respiratory biofeedback during the
DB exercises could have also led to some participants not
being able to estimate their respiratory rate to correctly
deep breathe and therefore relax. Respiratory relabeling
was not applied to stress-inducing activities since partici-
pants did not control their breathing rates during these
activities. Nevertheless, the varied subjective scores pro-
vided by participants for the stress-inducing activities in
our study indicate that relabeling stress activities simi-
larly should be explored.

5.2 Conclusions

As the goal of stress management is to prevent the onset of
chronic stress, devices are needed to detect physiological
warning signs of stress that can harm health. Though signi-
ficant work has been done in developing devices for stress
monitoring [4], [6], accurately training these devices
remains an open problem. The standard approach is to
either use protocol labels [4], [6] or perceived stress scores
[46], [49] to label activities in the training dataset. However,
given the high rate of variability within and amongst partic-
ipants in their response to stress, these approaches do not
provide an accurate ground truth about the individual
response. Using accurate activity labels based on a user’s
individual response to stress and relaxation can result in
improvements in the accuracy of the stress prediction
model. Given the inaccuracies in protocol-based and subjec-
tive based labeling as seen in our results; a physiological
measure (respiration) with known links to relaxation offers
an accurate calibration method for these devices.

In this study, we proposed a relabeling method,
ReBreathe, which uses the respiratory signal to determine
the accurate stress/relax labels of DB exercises in a calibration
protocol. ReBreathe takes advantage of the fact that DB
should effect respiration to determine baseline relaxation
labels. The low frequency component of the respiratory sig-
nal can thus be used to identify if the participant is breath-
ing at the prescribed rate and actually able to relax to
determine the participant’s true label for that activity. As
seen in Section 4.3, it is possible to accurately predict stress
labels obtained from the calibration respiratory data utiliz-
ing only HRV and EDA as well as only EDA features.
ReBreathe can similarly be used to train a relaxation system
providing users with feedback about the efficacy of their
breathing technique via heart rate and skin conductance
measures only. ReBreathe can also be used to normalize the
high level of inter-participant variability observed in the
perceived stress scores for DB exercises. Correlating self-
reported scores to DB activities with validated relax labels
allows normalization of the DB scores to be performed so
they map uniformly within and across all individuals.

5.3 Further Work

Our studywas conducted on a relatively small sample size (n
¼ 15 participants). Additional work is required to validate

ReBreathe on a larger population. We also need to determine
whether longer DB periods might be more efficient in induc-
ing relaxation and stress activities should also be similarly
relabeled. One of our immediate targets is to validate
ReBreathe and our stress prediction model in ambulatory set-
tings. In that context, we plan to utilize our earlier work on
the removal of motion artifacts from physiological signals
[68] to calibrate the device for when the participant is mobile.
Calibrating individual subjective stress scores could allow
subjective stress ratings to be included as an additional input
in stress predictionmodels to provide amultilevel stress pre-
diction output instead of a binary output.
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